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CORRECTIONS TO
Riemannian Manifolds: An Introduction to Curvature

BY JOHN M. LEE
AvucustT 10, 2004

Changes or additions made in the past six months are dated.

Page 15, Exercise 2.3: The first sentence should read: “Suppose M C M is a closed embedded
submanifold.”

Page 19, paragraph before Lemma 2.3: Insert the following before the last sentence ot the
paragraph: “A local frame for F is a finite sequence (o1, ...,0k) of smooth sections of E over U such
that (o1],,...,0n|,) form a basis for £, at each point p € U.”

Page 19, Lemma 2.3: Fz?'ll."‘_f: should read F*; also, change the name of the local frame from {FE;}
to {O’Z}

Page 19, Exercise 2.4: Replace the given exercise by:

(a) If (01,...,04) is a local frame for a vector bundle E over an open set U C M, let ¢: U x R* —
7~ (U) be the map ¥(p, x) = x*c;| . Show that 1)~ ! is a local trivialization of E.

(b) Prove Lemma 2.3.

D

Page 20, paragraph before Exercise 2.6: Replace the first sentence by “Let (Eq,..., FE,) be any
local tframe tor T'M.”

Page 21, just after Exercise 2.7: Add the following sentence in a paragraph by itselt: “Because of
the result of Lemma 2.4, it is common to use the same symbol for both a tensor field and the multilinear
map on sections that it defines, and to reter either of these objects as a tensor field.”

Page 24, third paragraph: Change the last sentence to “(When M is connected, it can be shown
that the isometry group is always ....)"

Page 27, paragraph before Exercise 3.6: Replace this paragraph by “The following exercise shows
that the converse is true provided we make the additional assumption that 7 is a normal covering,
which means that the group of covering transtormations acts transitively on each fiber of 7.”

Page 27, Exercise 3.6: Change “smooth covering map” to “smooth normal covering map.”

Page 41, Exercise 3.11(iii): Replace the last sentence by “In the higher-dimensional case, for any
point p € B?% and any vector V € T,B%, first show that h% (k. V. kV) = h%(V, V) if p € B C B%
and V' 1s tangent to B%; then show that the same is true if p & B% but V is arbitrary (using the fact
that h3, and h% are multiples of the Euclidean metrics at p and (p)); and finally conjugate x with a
suitable orthogonal transformation in n — 1 variables to reduce to the case p € B%.”

Page 46, Problem 3-9(a): Change the problem statement to: “Note that the natural action of
U(n+1) on C**! descends to a transitive action on CP". Show that CP™ can be uniquely given the
structure of a smooth, compact, real 2n-dimensional manifold on which this action is smooth.”

Page 63, problem 4-3(b): Replace the first sentence by “Show that there are vector fields V' and
W on R such that V = W = 0; along the x'-axis, but the Lie derivatives Ly (02) and Ly (02) are
not equal on the x!'-axis.”

Page 66, first full paragraph: Second sentence should read “Any vector field on M can be extended
to a smooth vector field on a neighborhood of M in R™ by the result of Exercise 2.3(b).” The part
of the second sentence after the two displayed equations should read “where X and Y are extended
arbitrarily to a neighborhood of M, ....”



Page 66, proof of Lemma 5.1, second paragraph: Second sentence should read “Let f € C°°(M)
be extended arbitrarily to a neighborhood of M.”

Page 86, last sentence: Replace the first part of the sentence by “In the higher-dimensional case, we
just precede k with a a suitable orthogonal transtormation of the ball, and follow it with a translation
and rotation in the x variables (both of which preserve geodesics as well as lines and circles), and apply
the usual ....”

Page 88, Problem 5-6(b): In the first displayed equation, replace w ® N by w ® N 3

Page 89, Problem 5-9: Insert the following sentence after line 3: “(If Z is any vector field on M,
we are using the notation notation Z to denote its horizontal lift.)” Also, in the hint, change both
occurrences of V to V.

Page 95, second displayed inequality: Delete “d(p,q) >” from the beginning of the inequality,
and replace the next sentence by “It follows that d(p,q) > ce > 0, so d is a metric.”

Page 105, first sentence of last paragraph: Change both instances of “|a, b|” to “|0, b|.”

Page 111, Corollary 6.15: Change the statement to “If M s complete, then any two points in M
can be joined by a minimizing geodesic segment.”

Page 112, Problem 6-2: Replace the hint by “/Hint: For the hard direction, proceed as follows.
(1) Show that any metric isometry ¢: (M,g) — (M,g) takes geodesics to geodesics. (2) For any

p € M, show that there is an open ball V = B.(0) C T,M and a map 9¥: V — Tgo(p)j\? satistying
exp,, () Y(X) = p(exp, X) for all X € V. (3) If ¢ is small enough and X,Y € 'V, show that there exists
a constant C' > 0 such that

(1 —Ct)[tX —tY |, < dg(exp,tX,exp,tY) < (1 + CtH)[tX —tY|,

whenever |t| < 1, by comparing g with the Euclidean metric in normal coordinates. (4) Using the
result of (3), conclude that

e dg(exp, tX, exp, tY')?
t—0 t2

= |X Y[, = X[, + Y], — 2(X,Y),.

and an analogous formula holds for g. (5) Show that (Y(X),¥(Y)); = (X,Y), for all X,Y € V.
(6) Show that v is the restriction of a linear map. (7) Conclude that ¢ is smooth and ¢, = 1.|”

Page 112, Problem 6-4: In part (a), change the second sentence to “For ¢ > 0 small enough that
Bs.(p) CW,....” In part (b), add to the hint “Be careful to verify that £ can be chosen independently
of V.”

Page 113, Problem 6-8: Delete the word “complete” and add instead “connected.” Also, revise
the hint as follows: “|Hint: Given p,q € M sufficiently near each other, consider the midpoint of a
geodesic joining p and ¢g. You may use without prootf the fact that the isometry group of M is a Lie
group acting smoothly on M.|”

Page 125, line 4: Replace the phrase “where div is the divergence operator (Problem 3-3)” by “where
div Rc is the 1-tensor obtained from V Rc by raising one index and contracting.”

Page 139, line before Exercise 8.4: Change “lies entirely in M” to “lies in M at least tor some
small time interval (—¢,¢).”
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Page 150, Problem 8-3: The left-hand side of the displayed equation should be h(V, V) instead of
h(V,W), and the denominator on the right-hand side should be | grad F'| instead of | grad F'|*. Also,

replace the last sentence with the following: “Show that the mean curvature ot M is given by

H =

' grad F'|

L ( grad F ) i i (0:0:F)(0;F)(0;F) — (8:0; F)(9:F) (9, F)

n = | grad F'|?

‘Hint: Use an adapted orthonormal frame.|”

Page 151, Problem 8-6: In the second to last line, change K dV, to (—1)" K dV/.

Page 176, Exercise 10.1: This is somewhat harder than most of the other exercises in the book,

and needs Proposition 10.4 for its solution, so it should probably be moved to the Problems section,
say as Problem 10-4.

Page 180, statement of Proposition 10.9: The first case of formula (10.8) should be C = 0, not
K =0.

Page 188, Figure 10.10: Replace vy(b) by v(a).

Page 188, line 4: Replace J(q) by J(b).

Page 188, last paragraph: Replace b by a in each formula in this paragraph.
Page 189, last two displayed equations: Replace b by a in three places.

4

Page 197, first line: Insert the following just atter “...local isometry.”: “Note that each line t — t.X
in 7T, M is a g-geodesic, so (1,M, g) is complete by Corollary 6.14.”

Page 208, Problem 11-3: In the last sentence, insert “is” before “at least.”

Page 213: The index entry for “Bianchi identity /contracted” should be page 125, not 124.

Page 216: The index entry for “escape lemma” should be page 61, not 60.



Pretace

T'his book i1s designed as a textbook for a one-quarter or one-semester grad-
uate course on Riemannian geometry, for students who are familiar with
topological and differentiable manifolds. It focuses on developing an inti-
mate acquaintance with the geometric meaning of curvature. In so doing, it
introduces and demonstrates the uses of all the main technical tools needed
for a careful study of Riemannian manifolds.

I have selected a set of topics that can reasonably be covered in ten to
fifteen weeks, instead of making any attempt to provide an encyclopedic
treatment of the subject. The book begins with a careful treatment of the
machinery of metrics, connections, and geodesics, without which one cannot
claim to be doing Riemannian geometry. It then introduces the Riemann
curvature tensor, and quickly moves on to submanifold theory in order to
olve the curvature tensor a concrete quantitative interpretation. From then
on, all efforts are bent toward proving the four most fundamental theorems
relating curvature and topology: the Gauss—Bonnet theorem (expressing
the total curvature of a surface in terms of its topological type), the Cartan—
Hadamard theorem (restricting the topology of manifolds of nonpositive
curvature), Bonnet’s theorem (giving analogous restrictions on manifolds
of strictly positive curvature), and a special case of the Cartan—Ambrose—-
Hicks theorem (characterizing manifolds of constant curvature).

Many other results and techniques might reasonably claim a place in an
introductory Riemannian geometry course, but could not be included due
to time constraints. In particular, I do not treat the Rauch comparison the-
orem, the Morse index theorem, Toponogov’s theorem, or their important
applications such as the sphere theorem, except to mention some of them
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in passing; and I do not touch on the Laplace—Beltrami operator or Hodge
theory, or indeed any of the multitude of deep and exciting applications
of partial differential equations to Riemannian geometry. These important
topics are for other, more advanced courses.

The libraries already contain a wealth of superb reterence books on Rie-
mannian geometry, which the interested reader can consult for a deeper
treatment of the topics introduced here, or can use to explore the more
esoteric aspects of the subject. Some of my favorites are the elegant in-
troduction to comparison theory by Jeff Cheeger and David Ebin [CE75]
(which has sadly been out of print for a number of years); Manfredo do
Carmo’s much more leisurely treatment of the same material and more
dC92|; Barrett O’Neill’s beautifully integrated introduction to pseudo-
Riemannian and Riemannian geometry |[O’N&3|; Isaac Chavel’s masterful
recent introductory text |{Cha93|, which starts with the foundations of the
subject and quickly takes the reader deep into research territory; Michael
Spivak’s classic tome [Spi79|, which can be used as a textbook if plenty of
time is available, or can provide enjoyable bedtime reading; and, of course,
the “Encyclopaedia Britannica” of differential geometry books, Founda-
ttons of Differential Geometry by Kobayashi and Nomizu [KNG63|. At the
other end of the spectrum, Frank Morgan’s delightful little book [Mor93]
touches on most of the important ideas in an intuitive and informal way
with lots of pictures—I enthusiastically recommend it as a prelude to this
book.

It 1s not my purpose to replace any of these. Instead, it is my hope
that this book will fill a niche in the literature by presenting a selective
introduction to the main ideas of the subject in an easily accessible way.
The selection is small enough to fit into a single course, but broad enough,
I hope, to provide any novice with a firm foundation from which to pursue
research or develop applications in Riemannian geometry and other fields
that use 1ts tools.

T'his book 1s written under the assumption that the student already
knows the fundamentals ot the theory of topological and differential mani-
folds, as treated, for example, in [Mas67, chapters 1-5| and |Boo86, chapters
1-6|. In particular, the student should be conversant with the fundamental
oroup, covering spaces, the classification of compact surfaces, topological
and smooth manifolds, immersions and submersions, vector fields and flows,
Lie brackets and Lie derivatives, the Frobenius theorem, tensors, differen-
tial forms, Stokes’s theorem, and elementary properties of Lie groups. On
the other hand, I do not assume any previous acquaintance with Riemann-
ian metrics, or even with the classical theory of curves and surfaces in R”.
(In this subject, anything proved before 1950 can be considered “classi-
cal.”) Although at one time it might have been reasonable to expect most
mathematics students to have studied surface theory as undergraduates,
few current North American undergraduate math majors see any differen-
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tial geometry. Thus the fundamentals of the geometry of surtaces, including
a proof of the Gauss—Bonnet theorem, are worked out from scratch here.

The book begins with a nonrigorous overview of the subject in Chapter
1, designed to introduce some of the intuitions underlying the notion of
curvature and to link them with elementary geometric ideas the student
has seen before. This is followed in Chapter 2 by a brief review of some
background material on tensors, manifolds, and vector bundles, included
because these are the basic tools used throughout the book and because
often they are not covered in quite enough detail in elementary courses
on manifolds. Chapter 3 begins the course proper, with definitions of Rie-
mannian metrics and some of their attendant flora and fauna. The end of
the chapter describes the constant curvature “model spaces” of Riemannian
ceometry, with a great deal of detailed computation. These models form a
sort of leitmotif throughout the text, and serve as illustrations and testbeds
for the abstract theory as it is developed. Other important classes of exam-
ples are developed in the problems at the ends of the chapters, particularly
invariant metrics on Lie groups and Riemannian submersions.

Chapter 4 introduces connections. In order to isolate the important prop-
erties of connections that are independent ot the metric, as well as to lay the
ocroundwork for their further study in such arenas as the Chern—Weil theory
of characteristic classes and the Donaldson and Seiberg—Witten theories of
cauge fields, connections are defined first on arbitrary vector bundles. This
has the further advantage of making it easy to define the induced connec-
tions on tensor bundles. Chapter 5 investigates connections in the context
of Riemannian manifolds, developing the Riemannian connection, its geo-
desics, the exponential map, and normal coordinates. Chapter 6 continues
the study of geodesics, focusing on their distance-minimizing properties.
First, some elementary ideas from the calculus of variations are introduced
to prove that every distance-minimizing curve is a geodesic. Then the Gauss
lemma is used to prove the (partial) converse—that every geodesic is lo-
cally minimizing. Because the Gauss lemma also gives an easy proof that
minimizing curves are geodesics, the calculus-ot-variations methods are not
strictly necessary at this point; they are included to facilitate their use later
In comparison theorems.

Chapter 7 unveils the first fully general definition of curvature. The cur-
vature tensor is motivated initially by the question of whether all Riemann-
1an metrics are locally equivalent, and by the failure ot parallel translation
to be path-independent as an obstruction to local equivalence. This leads
naturally to a qualitative interpretation of curvature as the obstruction to
flatness (local equivalence to Euclidean space). Chapter 8 departs some-
what from the traditional order of presentation, by investigating subman-
ifold theory immediately atter introducing the curvature tensor, so as to
define sectional curvatures and give the curvature a more quantitative ge-
ometric mterpretation.
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T'he last three chapters are devoted to the most important elementary
oclobal theorems relating geometry to topology. Chapter 9 gives a simple
moving-frames prootf of the GGauss—Bonnet theorem, complete with a care-
ful treatment of Hopf’s rotation angle theorem (the Umlaufsatz). Chapter
10 1s largely of a technical nature, covering Jacobi fields, conjugate points,
the second variation formula, and the index torm for later use in com-
parison theorems. Finally in Chapter 11 comes the dénouement—rproots ot
some of the “big” global theorems illustrating the ways in which curvature
and topology affect each other: the Cartan—-Hadamard theorem, Bonnet’s
theorem (and its generalization, Myers’s theorem), and Cartan’s character-
1ization of manifolds of constant curvature.

The book contains many questions for the reader, which deserve special
mention. They fall into two categories: “exercises,” which are integrated
into the text, and “problems,” grouped at the end of each chapter. Both are
essential to a full understanding of the material, but they are of somewhat
different character and serve different purposes.

T'he exercises include some background material that the student should
have seen already in an earlier course, some proofs that fill in the gaps from
the text, some simple but illuminating examples, and some intermediate
results that are used in the text or the problems. They are, in general,
elementary, but they are not optional—indeed, they are integral to the
continuity of the text. They are chosen and timed so as to give the reader
opportunities to pause and think over the material that has just been intro-
duced, to practice working with the definitions, and to develop skills that
are used later in the book. I recommend strongly that students stop and
do each exercise as it occurs in the text before going any further.

The problems that conclude the chapters are generally more diflicult
than the exercises, some ot them considerably so, and should be considered
a central part of the book by any student who is serious about learning the
subject. They not only introduce new material not covered in the body of
the text, but they also provide the student with indispensable practice in
using the techniques explained in the text, both for doing computations and
for proving theorems. If more than a semester is available, the instructor
might want to present some of these problems in class.

Acknowledgments: 1 owe an unpayable debt to the authors of the many
Riemannian geometry books I have used and cherished over the years,
especlally the ones mentioned above—Il have done little more than rear-
range their ideas into a form that seems handy for teaching. Beyond that,
I would like to thank my Ph.D. advisor, Richard Melrose, who many years
ago Introduced me to differential geometry in his eccentric but thoroughly
enlightening way; Judith Arms, who, as a fellow teacher of Riemannian
ceometry at the University of Washington, helped brainstorm about the
“1deal contents” of this course; all my graduate students at the University
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of Washington who have suffered with amazing grace through the flawed
early drafts ot this book, especially Jed Mihalisin, who gave the manuscript
a meticulous reading from a user’s viewpoint and came up with numerous
valuable suggestions; and Ina Lindemann ot Springer-Verlag, who encour-
aged me to turn my lecture notes into a book and gave me free rein in de-
ciding on its shape and contents. And ot course my wife, Pm Weizenbaum,
who contributed professional editing help as well as the loving support and
encouragement I need to keep at this day after day.
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1
What Is Curvature?

If you've just completed an introductory course on differential geometry,
you might be wondering where the geometry went. In most people’s expe-
rience, geometry 1s concerned with properties such as distances, lengths,
angles, areas, volumes, and curvature. These concepts, however, are barely
mentioned in typical beginning graduate courses in differential geometry:;
instead, such courses are concerned with smooth structures, tlows, tensors,
and differential forms.

The purpose of this book is to introduce the theory of Riemannian
manifolds: these are smooth manifolds equipped with Riemannian met-
rics (smoothly varying choices of inner products on tangent spaces), which
allow one to measure geometric quantities such as distances and angles.
This is the branch of modern differential geometry in which “geometric”
ideas, in the tamiliar sense of the word, come to the fore. It is the direct
descendant of Euclid’s plane and solid geometry, by way of Gauss’s theory
of curved surfaces in space, and it is a dynamic subject of contemporary
research.

The central unitying theme in current Riemannian geometry research is
the notion of curvature and its relation to topology. This book is designed
to help you develop both the tools and the intuition you will need for an in-
depth exploration of curvature in the Riemannian setting. Unfortunately,
as you will soon discover, an adequate development of curvature in an
arbitrary number of dimensions requires a great deal of technical machinery,
making it easy to lose sight of the underlying geometric content. To put
the subject in perspective, therefore, let’s begin by asking some very basic
questions: What is curvature? What are the important theorems about it?



2 1. What Is Curvature?

In this chapter, we explore these and related questions in an informal way,
without proofs. In the next chapter, we review some basic material about
tensors, manifolds, and vector bundles that is used throughout the book.
The “official” treatment of the subject begins in Chapter 3.

The Euclidean Plane

To get a sense of the kinds of questions Riemannian geometers address
and where these questions came from, let’s look back at the very roots of
our subject. The treatment of geometry as a mathematical subject began
with Euclidean plane geometry, which you studied in school. Its elements
are points, lines, distances, angles, and areas. Here are a couple of typical
theorems:

Theorem 1.1. (SSS) Two Fuclidean triangles are congruent if and only
of the lengths of their corresponding sides are equal.

Theorem 1.2. (Angle-Sum Theorem) The sum of the interior angles
of a Fuclidean triangle is .

As trivial as they seem, these two theorems serve to illustrate two major
types of results that permeate the study of geometry; in this book, we call
them “classification theorems” and “local-global theorems.”

The SSS (Side-Side-Side) theorem is a classification theorem. Such a
theorem tells us that to determine whether two mathematical objects are
equivalent (under some appropriate equivalence relation), we need only
compare a small (or at least finite!) number of computable invariants. In
this case the equivalence relation 1s congruence—equivalence under the
oroup of rigid motions of the plane—and the invariants are the three side
lengths.

The angle-sum theorem is of a different sort. It relates a local geometric
property (angle measure) to a global property (that of being a three-sided
polygon or triangle). Most of the theorems we study in this book are of
this type, which, for lack of a better name, we call local-global theorems.

Aftter proving the basic tacts about points and lines and the figures con-
structed directly from them, one can go on to study other figures derived
from the basic elements, such as circles. T'wo typical results about circles
are given below; the first is a classification theorem, while the second is a
local-global theorem. (It may not be obvious at this point why we consider
the second to be a local-global theorem, but it will become clearer soon.)

Theorem 1.3. (Circle Classification Theorem) Two circles in the Eu-
clidean plane are congruent if and only if they have the same radius.
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FIGURE 1.1. Osculating circle.

Theorem 1.4. (Circumference Theorem) The circumference of a Fu-
clidean circle of radius R 1s 2w R.

If you want to continue yvour study of plane geometry beyond figures
constructed from lines and circles, sooner or later you will have to come to
terms with other curves in the plane. An arbitrary curve cannot be com-
pletely described by one or two numbers such as length or radius; instead,
the basic invariant is curvature, which is defined using calculus and is a
function of position on the curve.

Formally, the curvature of a plane curve v is defined to be k(t) := |Y(¢)|,
the length of the acceleration vector, when ~ is given a unit speed param-
etrization. (Here and throughout this book, we think of curves as param-
etrized by a real variable ¢, with a dot representing a derivative with respect
to t.) Geometrically, the curvature has the following interpretation. Given
a point p = (%), there are many circles tangent to v at p—namely, those
circles that have a parametric representation whose velocity vector at p 1s
the same as that of v, or, equivalently, all the circles whose centers lie on
the line orthogonal to v at p. Among these parametrized circles, there is
exactly one whose acceleration vector at p is the same as that of ~; it is
called the osculating circle (Figure 1.1). (If the acceleration of v is zero,
replace the osculating circle by a straight line, thought of as a “circle with
infinite radius.” ) The curvature is then k(t) = 1/R, where R is the radius of
the osculating circle. The larger the curvature, the greater the acceleration
and the smaller the osculating circle, and therefore the faster the curve is
turning. A circle of radius R obviously has constant curvature x = 1/R,
while a straight line has curvature zero.

It is often convenient for some purposes to extend the definition of the
curvature, allowing 1t to take on both positive and negative values. 1his
i1s done by choosing a unit normal vector field /N along the curve, and
assigning the curvature a positive sign if the curve is turning toward the
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chosen normal or a negative sign if it is turning away from it. The resulting
function kK along the curve is then called the signed curvature.
Here are two typical theorems about plane curves:

Theorem 1.5. (Plane Curve Classification Theorem) Suppose v and
v: [a,b] — R* are smooth, unit speed plane curves with unit normal vec-

tor fields N and N, and rn(t). Kk (t) represent the signed curvatures at
v(t) and ~(t), respectively. Then v and v are congruent (by a direction-
preserving congruence) if and only if kn(t) = kg (t) for allt € |a,b).

Theorem 1.6. (Total Curvature Theorem) If ~v: [a,b] — R* is a unit
speed simple closed curve such that y(a) = ~(b), and N 1is the inward-
pownting normal, then

b
/ /iN(t) dt = 2.

The first of these is a classification theorem, as its name suggests. The
second 1s a local-global theorem, since it relates the local property ot cur-
vature to the global (topological) property of being a simple closed curve.
The second will be derived as a consequence of a more general result in
Chapter 9; the proot of the first is left to Problem 9-6.

It 1s interesting to note that when we specialize to circles, these theorems
reduce to the two theorems about circles above: Theorem 1.5 says that two
circles are congruent if and only if they have the same curvature, while The-
orem 1.6 says that if a circle has curvature x and circumiference C, then
kC = 2m. It 1s easy to see that these two results are equivalent to Theo-
rems 1.3 and 1.4. This is why it makes sense to consider the circumference
theorem as a local-global theorem.

Surfaces in Space

The next step in generalizing Euclidean geometry 1s to start working
in three dimensions. After investigating the basic elements of “solid
geometry”’—points, lines, planes, distances, angles, areas, volumes—and
the objects derived from them, such as polyhedra and spheres, one is led
to study more general curved surfaces in space (2-dimensional embedded
submanifolds of R”, in the language of differential geometry). The basic
invariant in this setting is again curvature, but i1t’s a bit more complicated
than for plane curves, because a surtace can curve differently in different
directions.

The curvature of a surface in space is described by two numbers at each
point, called the principal curvatures. We define them formally in Chapter
8, but here’s an informal recipe for computing them. Suppose S is a surface
in R?, pis a point in S, and N is a unit normal vector to S at p.
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FIGURE 1.2. Computing principal curvatures.

1. Choose a plane 1I through p that contains /N. The intersection of II
with S is then a plane curve v C II passing through p (Figure 1.2).

2. Compute the signed curvature kx of v at p with respect to the chosen
unit normal V.

3. Repeat this tor all normal planes II. The principal curvatures ot S at
p, denoted k1 and ko, are defined to be the minimum and maximum
signed curvatures so obtained.

Although the principal curvatures give us a lot of information about the
geometry of S, they do not directly address a question that turns out to
be of paramount importance in Riemannian geometry: Which properties
of a surtace are intrinsic? Roughly speaking, intrinsic properties are those
that could in principle be measured or determined by a 2-dimensional being
living entirely within the surface. More precisely, a property of surfaces in
R is called intrinsic if it is preserved by isometries (maps from one surface
to another that preserve lengths of curves).

To see that the principal curvatures are not intrinsic, consider the fol-
lowing two embedded surfaces S; and S in R® (Figures 1.3 and 1.4). S;
1s the portion of the xy-plane where 0 < y < 7, and 59 is the half-cylinder
{(z,y,2) :y” +2° =1,z > 0}. If we follow the recipe above for computing
principal curvatures (using, say, the downward-pointing unit normal), we
find that, since all planes intersect S7 in straight lines, the principal cur-






Surfaces in Space 7

////

FIGURE 1.5. K > 0. FIGURE 1.6. K < 0.

is negative (Figure 1.6), because the principal curvatures are of opposite
S1g1S.

The model spaces of surface theory are the surfaces with constant Gaus-
sian curvature. We have already seen two of them: the Euclidean plane
R? (K = 0), and the sphere of radius R (K = 1/R?). The third model
1s a surface of constant negative curvature, which is not so easy to visual-
ize because it cannot be realized globally as an embedded surface in R”.
Nonetheless, for completeness, let’s just mention that the upper half-plane
{(z,y) : y > 0} with the Riemannian metric g = R*y*(dz*+dy*) has con-
stant negative Gaussian curvature K = —1/R“. In the special case R = 1
(so K = —1), this is called the hyperbolic plane.

Surface theory is a highly developed branch of geometry. Of all its results,
two—a classification theorem and a local-global theorem—are universally
acknowledged as the most important.

Theorem 1.7. (Uniformization Theorem) FEvery connected 2-mani-
fold 1s diffeomorphic to a quotient of one of the three constant curvature
model surfaces listed above by a discrete group of isometries acting freely
and properly discontinuously. Therefore, every connected 2-manifold has a
complete Riemannian metric with constant Gaussian curvature.

Theorem 1.8. (Gauss—Bonnet Theorem) Let S be an oriented com-
pact 2-manifold with a Riemannian metric. Then

/ K dA = 2mx(S),
S

where x(S) is the Euler characteristic of S (which is equal to 2 if S is the
sphere, 0 if 1t 1s the torus, and 2 — 2qg 1f 1t 1s an orientable surface of genus

g).

The uniformization theorem is a classification theorem, because it re-
places the problem of classitying surtaces with that ot classifying discrete
oroups of isometries of the models. The latter problem is not easy by any
means, but it sheds a great deal of new light on the topology of surfaces
nonetheless. Although stated here as a geometric-topological result, the
uniformization theorem is usually stated somewhat differently and proved
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using complex analysis; we do not give a proof here. If you are familiar with
complex analysis and the complex version of the unitormization theorem, it
will be an enlightening exercise atter you have finished this book to prove
that the complex version of the theorem is equivalent to the one stated
here.

The Gauss—Bonnet theorem, on the other hand, is purely a theorem ot
differential geometry, arguably the most fundamental and important one
of all. We go through a detailed proof in Chapter 9.

Taken together, these theorems place strong restrictions on the types of
metrics that can occur on a given surface. For example, one consequence of
the Gauss—Bonnet theorem is that the only compact, connected, orientable
surface that admits a metric of strictly positive (Gaussian curvature is the
sphere. On the other hand, if a compact, connected, orientable surface
has nonpositive (Gaussian curvature, the Gauss—Bonnet theorem forces its
genus to be at least 1, and then the uniformization theorem tells us that
1ts universal covering space 1s topologically equivalent to the plane.

Curvature in Higher Dimensions

We end our survey of the basic ideas of geometry by mentioning briefly how
curvature appears in higher dimensions. Suppose M is an n-dimensional
manifold equipped with a Riemannian metric g. As with surfaces, the ba-
sic geometric mnvariant 1s curvature, but curvature becomes a much more
complicated quantity in higher dimensions because a manifold may curve
In so many directions.

The first problem we must contend with is that, in general, Riemannian
manifolds are not presented to us as embedded submanitolds of Euclidean
space. Therefore, we must abandon the idea of cutting out curves by in-
tersecting our manifold with planes, as we did when defining the princi-
pal curvatures of a surface in R°. Instead, we need a more intrinsic way
of sweeping out submanifolds. Fortunately, geodesics—curves that are the
shortest paths between nearby points—are ready-made tools for this and
many other purposes in Riemannian geometry. Examples are straight lines
in Euclidean space and great circles on a sphere.

The most fundamental fact about geodesics, which we prove in Chapter
4, 1s that given any point p € M and any vector V tangent to M at p, there
1S a unique geodesic starting at p with initial tangent vector V.

Here is a brief recipe tor computing some curvatures at a point p € M:

1. Pick a 2-dimensional subspace 11 of the tangent space to M at p.

2. Look at all the geodesics through p whose initial tangent vectors lie in
the selected plane 1l. It turns out that near p these sweep out a certain
2-dimensional submanifold S of M, which inherits a Riemannian
metric from M.
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3. Compute the Gaussian curvature of Sy at p, which the Theorema
Egregium tells us can be computed from its Riemannian metric. This
gives a number, denoted K (II), called the sectional curvature of M
at p assoclated with the plane Il.

Thus the “curvature” ot M at p has to be interpreted as a map
K : {2-planes in T, M } — R.

Again we have three constant (sectional) curvature model spaces: R"
with its Euclidean metric (for which K = 0); the n-sphere S of radius R,
with the Riemannian metric inherited from R®*! (K = 1/R?); and hyper-
bolic space H?, of radius R, which is the upper half-space {x € R"™ : 2" > 0}
with the metric hg = R*(z") 2> (dz*)* (K = —1/R?). Unfortunately,
however, there i1s as yet no satistactory uniformization theorem for Rie-
mannian manifolds in higher dimensions. In particular, it is definitely not
true that every manifold possesses a metric of constant sectional curvature.
In fact, the constant curvature metrics can all be described rather explicitly
by the tollowing classification theorem.

Theorem 1.9. (Classification of Constant Curvature Metrics) A
complete, connected Riemannian mamfold M with constant sectional cur-
vature 18 1sometric to M / [, where M is one of the constant curvature

model spaces R", S, or H%, and 1" is a discrete group of isometries of

M, isomorphic to m (M), and acting freely and properly discontinuously
on M.

On the other hand, there are a number of powerful local-global theorems,
which can be thought ot as generalizations ot the Gauss—Bonnet theorem in
various directions. They are consequences of the tact that positive curvature
makes geodesics converge, while negative curvature forces them to spread
out. Here are two of the most important such theorems:

Theorem 1.10. (Cartan—Hadamard) Suppose M is a complete, con-
nected Riemannian n-manifold with all sectional curvatures less than or
equal to zero. Then the universal covering space of M 1s diffeomorphic to

R".

Theorem 1.11. (Bonnet) Suppose M is a complete, connected Riemann-
ran manifold with all sectional curvatures bounded below by a positive con-
stant. Then M 1s compact and has a finite fundamental group.

Looking back at the remarks concluding the section on surtaces above,
you can see that these last three theorems generalize some of the conse-
quences of the uniformization and Gauss—Bonnet theorems, although not
their full strength. It i1s the primary goal of this book to prove Theorems
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1.9, 1.10, and 1.11; it is a primary goal of current research in Riemann-
1an geometry to improve upon them and further generalize the results of
surface theory to higher dimensions.



2

Review of Tensors, Manitolds, and
Vector Bundles

Most of the technical machinery of Riemannian geometry is built up us-
ing tensors; indeed, Riemannian metrics themselves are tensors. Thus we
begin by reviewing the basic definitions and properties of tensors on a
finite-dimensional vector space. When we put together spaces of tensors
on a manifold, we obtain a particularly usetul type of geometric structure
called a “vector bundle,” which plays an important role in many of our
investigations. Because vector bundles are not always treated in beginning
manifolds courses, we include a fairly complete discussion of them in this
chapter. The chapter ends with an application of these ideas to tensor bun-
dles on manitolds, which are vector bundles constructed from tensor spaces
assoclated with the tangent space at each point.

Much of the material included in this chapter should be familiar trom
your study of manifolds. It is included here as a review and to establish
our notations and conventions for later use. If you need more detail on any
topics mentioned here, consult |[Boo86| or [Spi79, volume 1|.

Tensors on a Vector Space

Let V be a finite-dimensional vector space (all our vector spaces and man-
ifolds are assumed real). As usual, V* denotes the dual space of V—the
space of covectors, or real-valued linear tunctionals, on V—and we denote
the natural pairing V* x V' — R by either of the notations

(w, X) — (w,X) or (w,X)r— w(X)
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forweV* X eV,
A covariant k-tensor on V' is a multilinear map

F:Vx---xV —R.
| S S ——

k copies

Similarly, a contravariant [-tensor is a multilinear map

F:V*x.-..xV*"—=R.
| S —
[ copies

We often need to consider tensors of mixed types as well. A tensor of type
(’f), also called a k-covariant, [-contravariant tensor, 1s a multilinear map

F:Vix---xV*xVx---xV —R.
[ copies k copies
Actually, in many cases it is necessary to consider multilinear maps whose
arguments consist of k£ vectors and [ covectors, but not necessarily in the
order implied by the definition above; such an object is still called a tensor
of type (];) For any given tensor, we will make 1t clear which arguments
are vectors and which are covectors.

The space of all covariant k-tensors on V' is denoted by T (V'), the space
of contravariant [-tensors by 7;(V'), and the space of mixed (]l€ )-tensors by
TF (V). The rank of a tensor is the number of arguments (vectors and/or
covectors) it takes.

There are obvious identifications T (V) = T%(V), T2(V) = T;(V),
T (V) =V*, T(V) = V** =V, and T°(V) = R. A less obvious, but
extremely important, identification is 7} (V') = End(V'), the space of linear
endomorphisms of V' (linear maps from V to itself). A more general version

of this identification is expressed in the following lemma.

Lemma 2.1. Let V be a finite-dimensional vector space. There is a nat-

ural (basis-independent) isomorphism between T /fH(V) and the space of

multilinear maps

ViX o . XV*XVXx-e- xV >V,
\—,—/ \‘/_/
[ k

Exercise 2.1. Prove Lemma 2.1. [Hint: In the special case k = 1, [ = 0,

consider the map ®: End(V) — T} (V) by letting ®A be the (;)-tensor
defined by ®A(w, X) = w(AX). The general case is similar.]

There 1s a natural product, called the tensor product, linking the various
tensor spaces over V; if F' € T;(V) and G € TP(V), the tensor F @ G €

T7°P(V) is defined by

q
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If (E1,...,E,) is a basis for V, we let (¢!,...,¢") denote the corre-
sponding dual basis for V*, defined by ¢*(E;) = 6. A basis for T;*(V) is
ogiven by the set of all tensors of the form

Ej, @ - QFE;, Q¢"®-Q @™, (2.1)

as the indices 1,, 7, range from 1 to n. These tensors act on basis elements

by

Ei @ QE, " ®@--- Q¢ (..., ¢ E,.,...,E.)
S SN S L X2 B N 7
1 Tk~

J 71 " T1

Any tensor F' € T/*(V') can be written in terms of this basis as
F=FlE,© - 9F, 9" @ @p, (2.2)
where
Fij11...‘.:ijkl — F(Spjlv SR (pjz ; Eila t ot E%)

In (2.2), and throughout this book, we use the Finstein summation con-
vention tor expressions with indices: if in any term the same index name
appears twice, as both an upper and a lower index, that term 1s assumed to
be summed over all possible values of that index (usually from 1 to the di-
mension of the space). We always choose our index positions so that vectors
have lower indices and covectors have upper indices, while the components
of vectors have upper indices and those of covectors have lower indices.
T'his ensures that summations that make mathematical sense always obey
the rule that each repeated index appears once up and once down 1n each
term to be summed.

If the arguments of a mixed tensor F' occur in a nonstandard order, then
the horizontal as well as vertical positions of the indices are significant and
reflect which arguments are vectors and which are covectors. For example,
if B 1s a (2) -tensor whose first argument is a vector, second is a covector,

1
and third 1s a vector, its components are written

We can use the result of Lemma 2.1 to define a natural operation called
trace or contraction, which lowers the rank of a tensor by 2. In one special
case, it is easy to describe: the operator tr: 77 (V) — R is just the trace
of F' when it 1s considered as an endomorphism of V. Since the trace of
an endomorphism is basis-independent, this is well defined. More generally,
we define tr: ]}kﬁl(V) — T (V) by letting tr F(w',..., 0", V4,..., Vi) be
the trace ot the endomorphism

F(wh, ... 0 e Vi, Vi, ) € THV).
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In terms of a basis, the components of tr F' are

(e FY

_ Fjljlm
e Ve 11

M

Even more generally, we can contract a given tensor on any pair of indices
as long as one 1s contravariant and one 1s covariant. There 1s no general
notation for this operation, so we just describe it in words each time it
arises. For example, we can contract the tensor 5 with components given
by (2.3) on its first and second indices to obtain a covariant 1-tensor A
whose components are A = 2

Exercise 2.2. Show that the trace on any pair of indices is a well-defined

linear map from ]}If:rll(V) to T (V).

A class of tensors that plays a special role in differential geometry is that
of alternating tensors: those that change sign whenever two arguments
are interchanged. We let A®(V') denote the space of covariant alternating
k-tensors on V', also called k-covectors or (exterior) k-forms. There is a
natural bilinear, associative product on forms called the wedge product,
defined on 1-forms w!,....w" by setting

WA AW (X X)) = det((0', X)),

and extending by linearity. (There is an alternative definition of the wedge
product 1n common use, which amounts to multiplying our wedge prod-
uct by a factor of 1/k!. The choice of which definition to use is a matter
of convention, though there are various reasons to justity each choice de-
pending on the context. The definition we have chosen is most common
in introductory differential geometry texts, and is used, for example, in

‘Boo86, Cha93, dC92, Spi79|. The other convention is used in |[KN63| and
is more common in complex differential geometry.)

Manifolds

Now we turn our attention to manifolds. Throughout this book, all our
manifolds are assumed to be smooth, Hausdorfl, and second countable:;
and smooth always means C'°°, or infinitely differentiable. As in most parts
of differential geometry, the theory still works under weaker differentiabil-
1ty assumptions, but such considerations are usually relevant only when
treating questions of hard analysis that are beyond our scope.

We write local coordinates on any open subset U C M as (z!,...,2"),
(%), or x, depending on context. Although, formally speaking, coordinates
constitute a map trom U to R", it 1s more common to use a coordinate
chart to identify U with its image in R", and to identify a point in U with
its coordinate representation (x') in R™.
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For any p € M, the tangent space 1, M can be characterized either as the
set of derivations of the algebra of germs at p of C"*° functions on M (i.e.,
tangent vectors are “directional derivatives”), or as the set of equivalence
classes of curves through p under a suitable equivalence relation (i.e., tan-
gent vectors are “velocities” ). Regardless of which characterization is taken
as the definition, local coordinates (x") give a basis for T),M consisting of
the partial derivative operators 9/0x'. When there can be no confusion
about which coordinates are meant, we usually abbreviate 0/0x" by the
notation 0;.

On a finite-dimensional vector space V with its standard smooth mani-
fold structure, there is a natural (basis-independent) identification of each
tangent space 1,V with V itsell, obtained by identifying a vector X € V'
with the directional derivative

d

X[ = | . f(p+1tX).

In terms of the coordinates (z*) induced on V' by any basis, this is just the
usual identification (z1,...,2") < 2°0;.

In this book, we always write coordinates with upper indices, as in (x?).
This has the consequence that the differentials dz* of the coordinate func-
tions are consistent with the convention that covectors have upper indices.
Likewise, the coordinate vectors 9; = 0/0x" have lower indices if we con-
sider an upper index “in the denominator” to be the same as a lower index.

If M is a smooth manifold, a submanifold (or immersed submanifold) of

@ 1S a smooth manifold M together with an injective immersion ¢: M —
M . Identifying M with its image (M) C M, we can consider M as a subset

of M , although in general the topology and smooth structure of M may
have little to do with those ot M and have to be considered as extra data.
The most important type of submanifold is that in which the inclusion
map ¢ 1s an embedding, which means that 1t 1s a homeomorphism onto its
image with the subspace topology. In that case, M is called an embedded
submanifold or a reqular submanifold.

Suppose M 1s an embedded n-dimensional submanifold of an m-
dimensional manifold M. For every point p € M, there exist slice coor-
dinates (x',...,x™) on a neighborhood U of p in M such that U N M is
given by {z : 2! = ... = 2™ = 0}, and (z',...,2") form local coor-
dinates for M (Figure 2.1). At each ¢ € U N M, 1,M can be naturally
identified as the subspace ot Tqﬁ spanned by the vectors (01,...,0,).

Exercise 2.3. Suppose M C M is an embedded submanifold.

(a) If f is any smooth function on M, show that f can be extended to a

smooth function on M whose restriction to M is f. |Hint: Extend f lo-
cally in slice coordinates by letting it be independent of (z"**, ..., ™),
and patch together using a partition of unity.]
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FIGURE 2.1. Slice coordinates.

(b) Show that any vector field on M can be extended to a vector field on

e

M .

(c) If X is a vector field on M - show that X is tangent to M at points

of M if and only if Xf = 0 whenever f € C’OO(M ) is a function that
vanishes on M.

Vector Bundles

When we glue together the tangent spaces at all points on a manifold M,
we get a set that can be thought of both as a union of vector spaces and
as a manifold in its own right. This kind of structure is so common in
differential geometry that it has a name.

A (smooth) k-dimensional vector bundle is a pair of smooth manifolds F
(the total space) and M (the base), together with a surjective map m: FF —
M (the projection), satisfying the following conditions:

(a) Each set E, := 7~ !(p) (called the fiber of E over p) is endowed with
the structure of a vector space.

(b) For each p € M, there exists a neighborhood U of p and a diffeomor-
phism ¢: 7= (U) — U x RF (Figure 2.2), called a local trivialization



Vector Bundles 17

1 (U) U x R”

U U

FIGURE 2.2. A local trivialization.

of E/, such that the following diagram commutes:

I (U) —— U x R¥

T 1

Vv N

U U

(where 7 is the projection onto the first factor).

(¢c) The restriction of ¢ to each fiber, ¢: E, — {p} x R”, is a linear
1Isomorphism.

Whether or not you have encountered the formal definition of vector
bundles, you have certainly seen at least two examples: the tangent bundle
I'M of a smooth manifold M, which is just the disjoint union of the tangent
spaces 1,M for all p € M, and the cotangent bundle 1™ M, which is the
disjoint union of the cotangent spaces I'7M = (1), M)*. Another example
that is relatively easy to visualize (and which we formally define in Chapter
8) is the normal bundle to a submanifold M C R, whose fiber at each
point is the normal space N,M, the orthogonal complement of 7;,,M in R".

It tfrequently happens that we are given a collection of vector spaces, one
for each point in a manifold, that we would like to “glue together” to form a
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vector bundle. For example, this 1s how the tangent and cotangent bundles
are defined. There is a shortcut for showing that such a collection torms
a vector bundle without first constructing a smooth manifold structure on
the total space. As the next lemma shows, all we need to do is to exhibit
the maps that we wish to consider as local trivializations and check that
they overlap correctly.

Lemma 2.2. Let M be a smooth manifold, £ a set, and 7: E — M a
surjective map. Suppose we are given an open covering {Uy} of M together
with bijective maps po: 7 1 (Uy,) — Uy x RY satisfying m1 o o = ™, such
that whenever U, NUg # (), the composite map

00005 1 UaNUs x R - Uy NUs x RF
1 of the form

vaopg (0, V) =(p,7(pV) (2.4)

for some smooth map 7: Uy, N Ug — GL(k,R). Then E has a unique
structure as a smooth k-dimensional vector bundle over M for which the

maps @, are local trivializations.

Proof. For each p € M, let E, = 7 (p). If p € U,, observe that the
map (¢o)p: B, — {p} x RF obtained by restricting ¢, is a bijection. We
can define a vector space structure on k£, by declaring this map to be
a linear isomorphism. This structure is well defined, since for any other
set Ug containing p, (2.4) guarantees that (¢q)p o (vg)," = 7(p) is an
1Isomorphism.

Shrinking the sets U, and taking more of them if necessary, we may
assume each of them is diffeomorphic to some open set U, C R". Following
o With such a diffeomorphism, we get a bijection 7~ Y(U,) — U, x RF,
which we can use as a coordinate chart for E. Because (2.4) shows that the
poS overlap smoothly, these charts determine a locally Euclidean topology
and a smooth manifold structure on E. It is immediate that each map ¢,
1s a diffeomorphism with respect to this smooth structure, and the rest ot
the conditions for a vector bundle tollow automatically. ]

The smooth GL(k,R)-valued maps 7 of the preceding lemma are called
transition functions for E.

As an illustration, we show how to apply this construction to the tan-
gent bundle. Given a coordinate chart (U, (z*)) for M, any tangent vector
Ve, M at a point x € U can be expressed in terms of the coordinate
basis as V = v'9/0x" for some n-tuple v = (v!,...,v"™). Define a bijection
p: 71 (U) - U x R" by sending V € T, M to (x,v). Where two coordi-
nate charts (z*) and (') overlap, the respective coordinate basis vectors
are related by

0 0x) O
Oxt Ozt OxI’




Tensor Bundles and Tensor Fields 19

and therefore the same vector V is represented by

.9 .8 0@ 0

] 0
— —
0L

0

— - = S
ox’ oxt 0xJ

This means that 97 = v*'0%? /0x*, so the corresponding local trivializations
@ and @ are related by

pop (z,v) = @(V) = (2,9) = (z,7(2)v),

where 7(x) is the GL(n, R)-valued function 0z7 /90x'. It is now immediate
from Lemma 2.2 that these are the local trivializations for a vector bundle
structure on 1'M.

It is usetul to note that this construction actually gives explicit coordi-
nates (z°,v*) on 7~ 1(U), which we will refer to as standard coordinates for
the tangent bundle.

If 7: £ — M is a vector bundle over M, a section of E'isamap F: M —
E such that wo F' = Idy;, or, equivalently, F'(p) € E,, for all p. It is said to
be a smooth section if it is smooth as a map between manitolds. The next
lemma gives another criterion for smoothness that is more easily verified
In practice.

Lemma 2.3. Let F': M — E be a section of a vector bundle. F' is smooth
of and only if the components FZ-Jll_"'_fkl of F' in terms of any smooth local
frame {E;} on an open set U € M depend smoothly on p € U.

Exercise 2.4. Prove Lemma 2.3.

The set of smooth sections of a vector bundle is an infinite-dimensional
vector space under pointwise addition and multiplication by constants,
whose zero element is the zero section ¢ defined by (, = 0 € E,, for all
p € M. In this book, we use the script letter corresponding to the name
of a vector bundle to denote its space of sections. Thus, for example, the
space of smooth sections of T'M is denoted J(M); it is the space of smooth
vector fields on M. (Many books use the notation X(M) for this space, but
our notation is more systematic, and seems to be becoming more common. )

Tensor Bundles and Tensor Fields

On a manifold M, we can perform the same linear-algebraic constructions

on each tangent space 1), M that we perform on any vector space, yielding

tensors at p. For example, a (];)—tensor at p € M 1is just an element of

TF(T,M). We define the bundle of (I;) -tensors on M as

17" M := H le(TpM)a
peM
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where || denotes the disjoint union. Similarly, the bundle of k-forms is

ARM =[] AM(T,M).
pe M

There are the usual identifications TyM = TM and T'M = A'M = T*M.
To see that each of these tensor bundles is a vector bundle, define the

projection 7: T/“M — M to be the map that simply sends F' & fl}k(TpM)
to p. If (z*) are any local coordinates on U C M, and p € U, the coordinate
vectors {0;} form a basis for T,,M whose dual basis is {dz’}. Any tensor
F e T (T, M) can be expressed in terms of this basis as

F=F"79,® - ®0,®d" @ &dx"™.

Exercise 2.5. For any coordinate chart (U, (z*)) on M, define a map ¢
from 7T_1(U) CTFM to U « R™ by sending a tensor F € T}"(T M) to

(@ (F]1 ') € U X R™ . Show that T}" M can be made into a smooth vec-
tor bundle in a unique way so that all such maps ¢ are local trivializations.

A tensor field on M 1s a smooth section of some tensor bundle T/“M ,
and a differential k-form is a smooth section of A*M. To avoid confusion
between the point p € M at which a tensor field is evaluated and the
vectors and covectors to which it is applied, we usually write the value of a
tensor field F' at p € M as F, € T (1, M), or, if it is clearer (for example if

F' itself has one or more subscripts), as F'|,,. The space of (];)—tensor fields
is denoted by T7 (M), and the space of covariant k-tensor fields (smooth
sections of T*M) by T*(M). In particular, T1(M) is the space of 1-forms.
We follow the common practice of denoting the space of smooth real-valued
functions on M (i.e., smooth sections of T°M) by C°>°(M).

Let (Eq,...,E,) be any local frame for T'M, that is, n smooth vector
fields defined on some open set U such that (E1|,,..., Ey|)) form a basis
for 1,M at each point p € U. Associated with such a frame is the dual
Co fmme which we denote (!, ..., ©"); these are smooth 1-forms satisfying

ng(EJ) — (5”‘ In terms of any local tframe, a ( ) tensor field F' can be written

in the form (2.2), where now the components F J1; ,ijkl are to be interpreted

as functions on U. In particular, in terms of a coordinate frame {0;} and
its dual coframe {dx'}, F’ has the coordinate expression

F,=F!"7"(p)0j, ® ®0; @dz" @+ @ da"™. (2.5)

Exercise 2.6. Let F': M — T M be a section. Show that F is a smooth
tensor field if and only if whenever {X;} are smooth vector fields and

{w?} are smooth 1-forms defined on an open set U C M, the function
F(w',..., 0" X1,...,Xk) on U, defined by

F(w', ..., X1,..., X0)(p) = Fo(wp, ..., wy, Xilps - Xi|p),

o

1S smooth.
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An important property of tensor fields is that they are multilinear over

the space of smooth functions. Given a tensor field F' € TF(M), vector
fields X; € T(M), and 1-forms w’ € T'(M), Exercise 2.6 shows that the
function F(X1q,...,Xg, w!,...,w") is smooth, and thus F induces a map

F:THM)x - xTH(M)xT(M) x - xT(M)— C®(M).

[t is easy to check that this map is multilinear over C'°°(M), that is, for
any functions f,g € C°°(M) and any smooth vector or covector fields a,

0,
F(....fa4+gB,..)=fF(...a,.. )+ gF(....5,...).

Fven more important 1s the converse: as the next lemma shows, any such
map that is multilinear over C°°(M ) defines a tensor field.

Lemma 2.4. (Tensor Characterization Lemma) A map
T THM) x - X T (M) X T(M) x - xT(M) — C®(M)

1S 1nduced by a (l;) -tensor field as above if and only if it 1s multilinear over
C°°(M). Similarly, a map

T T (M) X - X THM)x T(M) x -+ x T(M) — T(M)

18 tnduced by a (lfl)-tensor field as in Lemma 2.1 if and only if it 1s

multilinear over C°°(M).

Exercise 2.7. Prove Lemma 2.4.
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Definitions and Examples of
Riemannian Metrics

In this chapter we officially define Riemannian metrics and construct some
of the elementary objects associated with them. At the end ot the chap-
ter, we introduce three classes of highly symmetric “model” Riemannian
manifolds—Euclidean spaces, spheres, and hyperbolic spaces—to which we
will return repeatedly as our understanding deepens and our tools become
more sophisticated.

Riemannian Metrics

Definitions

A Riemannian metric on a smooth manitold M is a 2-tensor field g €
T2(M) that is symmetric (i.e., g(X,Y) = ¢g(Y, X)) and positive definite
(i.e., g(X, X) > 0if X #£ 0). A Riemannian metric thus determines an inner
product on each tangent space 1), M, which is typically written (X,Y) :=
g(X,Y) for X,Y € T,M. A manifold together with a given Riemannian
metric is called a Riemannian manifold. We often use the word “metric”
to reter to a Riemannian metric when there is no chance ot contfusion.

Exercise 3.1. Using a partition of unity, prove that every manifold can
be given a Riemannian metric.

Just as in Euclidean geometry, if p is a point in a Riemannian manifold
(M, g), we define the length or norm of any tangent vector X € T),M to be
X | := (X, X)/2, Unless we specify otherwise, we define the angle between
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two nonzero vectors X,Y € T,M to be the unique 6§ € |0, n] satisfying
cos = (X,Y)/(|X||Y]). (Later, we will further refine the notion of angle
in special cases to allow more general values of 6.) We say that X and Y
are orthogonal if their angle is m/2, or equivalently if (X,Y) = 0. Vectors
FEq,...,E, are called orthonormal it they are of length 1 and pairwise
orthogonal, or equivalently if (E;, E;) = 0;;.

If (M, g) and (M, §) are Riemannian manifolds, a diffeomorphism ¢ from

M to M is called an isometry if ©*g = g. We say (M, g) and (M, g) are
isometric it there exists an isometry between them. It is easy to verify
that being isometric is an equivalence relation on the class of Riemannian
manifolds. Riemannian geometry is concerned primarily with properties
that are preserved by i1sometries.

An isometry ¢: (M, g) — (M, g) is called an isometry of M. A compo-
sition of isometries and the inverse of an isometry are again isometries, so
the set of isometries of M is a group, called the isometry group of M; it is
denoted J(M). (It can be shown that the isometry group is always a finite-
dimensional Lie group acting smoothly on M; see, for example, [Kob72,
Theorem II.1.2.)

If (E1,...,E,) is any local frame for TM, and (¢!,..., ") is its dual
coframe, a Riemannian metric can be written locally as

g=giip" Q.

The coefficient matrix, defined by g;; = (E;, E/;), is symmetric in ¢ and j
and depends smoothly on p € M. In particular, in a coordinate frame, g
has the form

g = g;;dx’ @ dz’. (3.1)

The notation can be shortened by introducing the symmetric product ot
two 1-forms w and 7, denoted by juxtaposition with no product symbol:

W = %(w@nJrn@w).
Because of the symmetry of g;;, (3.1) is equivalent to
g = gijda:ida:j.

Exercise 3.2. Let p be any point in a Riemannian n-manifold (M, g).
Show that there is a local orthonormal frame near p—that is, a local frame
F1,...,E, defined in a neighborhood of p that forms an orthonormal basis
for the tangent space at each point. [Hint: Use the Gram—Schmidt algorithm.
Warning: A common mistake made by novices is to assume that one can find
coordinates near p such that the coordinate vector fields 0; are orthonormal.
Your solution to this exercise does not show this. In fact, as we will see in
Chapter 7, this is possible only when the metric is flat, i.e., locally isometric
to the Euclidean metric.|
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Examples

One obvious example of a Riemannian manifold is R™ with its Euclidean
metric g, which 1s just the usual inner product on each tangent space 1, R"
under the natural identification 7, R"” = R". In standard coordinates, this
can be written in several ways:

(/

The matrix of g in these coordinates 1s thus g;; = 0;;.

Many other examples of Riemannian metrics arise naturally as subman-
ifolds, products, and quotients of Riemannian manifolds. We begin with
submanifolds. Suppose (M, g) is a Riemannian manifold, and ¢: M — M

is an (immersed) submanifold of M. The induced metric on M is the 2-
tensor ¢ = ¢, which 1is just the restriction of g to vectors tangent to M.
Because the restriction of an inner product is itselt an inner product, this
obviously defines a Riemannian metric on M. For example, the standard
metric on the sphere S” € R"™! is obtained in this way:; we study it in
much more detail later in this chapter.

Computations on a submanifold are usually most conveniently carried
out In terms of a local parametrization: this i1s an embedding of an open
subset U C R"™ into M, whose image is an open subset of M. For example,
if X: U — R™ is a parametrization of a submanifold M C R™ with the
induced metric, the induced metric in standard coordinates (u',...,u™) on
U 1s just

g = i(dxi)Q — i (‘Zj duj>2.

Exercise 3.3. Let vy(f) = (a(t),b(t)), t € I (an open interval), be a smooth
injective curve in the xz-plane, and suppose a(t) > 0 and ¥(t) # 0 for all

t € I. Let M C R° be the surface of revolution obtained by revolving the
image of v about the z-axis (Figure 3.1).

(a) Show that M is an immersed submanifold of R”, and is embedded if
~ 1s an embedding.

(b) Show that the map ¢(8,t) = (a(t)cos8,a(t)sinf,b(t)) from R X I to
R° is a local parametrization of M in a neighborhood of any point.

(¢) Compute the expression for the induced metric on M in (6,%) coordi-
nates.

(d) Specialize this computation to the case of the doughnut-shaped torus
of revolution given by (a(t),b(t)) = (2 + cost,sint).

Exercise 3.4. The n-torus is the manifold T™ := S* x---x S*, considered
as the subset of R*" defined by (z')* + (z°)* = -+ = (z°"1)* + (z°")* =
1. Show that X(u',...,u") = (cosu',sinu’,...,cosu”,sinu™) gives local
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FIGURE 3.1. A surface of revolution.

parametrizations of T when restricted to suitable domains, and that the
induced metric is equal to the Euclidean metric in (") coordinates.

Next we consider products. If (M7, g1) and (M>, g2) are Riemannian man-
ifolds, the product M; x M5 has a natural Riemannian metric g = g1 & g9,
called the product metric, detined by

g( X1+ Xo, Y1 +Y5) = g1(X1,Y7) + g2( X2, Ys), (3.3)

where X;,Y; € 1, M; under the natural identification 17, ,,)Mq X My =
1y My D1, Ms.

Any local coordinates (z!,...,z") for M; and (x™*1,... 2™ "™) for My

give coordinates (zt, ..., 2" ™) for M7 x M>. In terms of these coordinates,

the product metric has the local expression g = g;;dx'dx?, where (g;;) is
the block diagonal matrix

6= (" (@)
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Exercise 3.5. Show that the induced metric on T" described in Exercise
3.4 is the product metric obtained from the usual induced metric on S* C

R”.

Our last class of examples 1s obtalned from covering spaces. Suppose
m: M — M is a smooth COvering map. £ A cove’mng transformation (or deck

transformation) is a smooth map ¢: M — M such that 7 o o =m. It g 1s 1S

a Riemannian metric on M, then g := 7w ¢ 1s a Riemannian metric on M
that is invariant under all covering transformations. In this case ¢ is called
the covering metric, and 7 1s called a Riemannian covering. o

The following exercise shows the converse: Any metric on M that is
invariant under all covering transtormations descends to M.

Exercise 3.6. If 7 M — M is a smooth covering map, and g 1s any
metric on M that is invariant under all covering transformations, show that
there is a unique metric g on M such that g = 77 g.

Exercise 3.7. Let T" C R*" denote the n-torus. Show that the map
X: R" — T" of Exercise 3.4 is a Riemannian covering.

Later in this chapter, we will undertake a much more detailed study of
three important classes of examples of Riemannian metrics, the “model
spaces” of Riemannian geometry. Other examples, such as metrics on Lie
oroups and on complex projective spaces, are introduced in the problems

at the end of the chapter.

Elementary Constructions Associated with
Riemannian Metrics

Raising and Lowering Indices

One elementary but important property of Riemannian metrics is that they
allow us to convert vectors to covectors and vice versa. (Given a metric g

on M, define a map called flat trom T'M to 1™ M by sending a vector X
to the covector X’ defined by

X(YV) :=g(X,Y).
In coordinates,
X’ =g (Xi&i, ) — g;; X"da?.
[t is standard practice to write X’ in coordinates as X° = X ; dz’ , where

Xj . — ngZ
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One says that X’ is obtained from X by lowering an index. (This is why
the operation is designated by the musical notation » = “flat.”)

The matrix of flat in terms of a coordinate basis is therefore the matrix
of g itself. Since the matrix of ¢ is invertible, so is the flat operator; we
denote its inverse by (what else?) w — w7, called sharp. In coordinates,
w7 has components

W' = g" Wi,
where, by definition, g*/ are the components of the inverse matrix (g;;)~".
One says w™ is obtained by raising an indez.

Probably the most important application of the sharp operator is to
extend the classical gradient operator to Riemannian manifolds. If f is a
smooth, real-valued function on a Riemannian manifold (M, g), the gradient
of f is the vector field grad f := df? obtained from df by raising an index.

Looking through the definitions, we see that grad f is characterized by the
fact that

df(Y) = (grad f,Y) forall Y € T'M,
and has the coordinate expression
grad f — gij &fﬁj

The flat and sharp operators can be applied to tensors of any rank, in
any index position, to convert tensors from covariant to contravariant or
vice versa. For example, if B is again the 3-tensor with components given
by (2.3), we can lower its middle index to obtain a covariant 3-tensor B’
with components

Bijk = g1Bi'k-
In coordinate-iree notation, this is just
B (X,Y,Z):= B(X,Y’, 7).

(Of course, if a tensor has more than one upper index, the flat notation
doesn’t tell us which one to lower. In such cases, we have to explain in
words what is meant.)

Another important application of the flat and sharp operators is to ex-
tend the trace operator introduced in Chapter 2 to covariant tensors. We
consider only symmetric 2-tensors here, but it is easy to extend these results
to more general tensors.

If h is a symmetric 2-tensor on a Riemannian manifold, then A7 is a G)—

tensor and therefore tr h™ is defined. We define the trace of h with respect
Lo g as

trq h := tr hit



Elementary Constructions Associated with Riemannian Metrics 29

(Because h is symmetric, it doesn’t matter which index is raised.) In terms
of a basis, this is

tI'g h = hzz — ijhij.

In particular, in an orthonormal basis this is the ordinary trace of a matrix.

Inner Products of Tensors

A metric is by definition an inner product on tangent vectors. As the fol-
lowing lemma shows, it determines an inner product (and hence a norm)
on all tensor bundles as well. First a bit of terminology: If £ — M is a
vector bundle, a fiber metric on E is an inner product on each fiber E),
that varies smoothly, in the sense that for any (local) smooth sections o, 7
of E/, the inner product (o, 7) is a smooth function.

Lemma 3.1. Let g be a Riemannian metric on a manifold M. There is
a unique fiber metric on each tensor bundle T ﬁM with the property that
if (E1,...,E,) is an orthonormal basis for T,M and (p',...,@") is the
corresponding dual basis, then the collection of tensors given by (2.1) forms
an orthonormal basis for T (T, M).

Exercise 3.8. Prove Lemma 3.1 by showing that in any local coordinate
system, the required inner product is given by

. il"“l 'zlk'rk ' o ' ‘1...]‘1 51...9]
<Fa G) — 9 g 9ijis1 gjzstlel...fz:k G'rl---frk'
Show moreover that if w, n are covariant 1-tensors, then

(w,m) = (W™, n™).

The Volume Element and Integration

The final general construction we will study betore looking at specific ex-
amples of metrics is the volume element.

Lemma 3.2. On any oriented Riemannian n-manifold (M, g), there is a
unique n-form dV satisfying the property that dV(E1,...,E,) = 1 when-
ever (E1,...,FE,) ts an oriented orthonormal basis for some tangent space
1,M.

This n-form dV (sometimes denoted dV, for clarity) is called the (Rie-
mannian) volume element.

Exercise 3.9. Prove Lemma 3.2, and show that the expression for dV
with respect to any oriented local frame {F;} is

dV = \/det(gi;) " A+ A",

where g;; = (E;, E;) are the coefficients of g and {¢*} is the dual coframe.
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The significance of the Riemannian volume element is that it allows us
to integrate functions, not just differential forms. If f is a smooth, com-
pactly supported function on an oriented Riemannian n-manifold (M, g),
then f dV is a compactly supported n-form. Therefore the integral [ A av
makes sense, and we define it to be the integral of f over M. Similarly, the

volume of M is defined to be [, dV = [, 1dV.

(zeneralizations of Riemannian Metrics

There are other common ways of measuring “lengths” of tangent vectors on
smooth manifolds. Let’s digress briefly to mention three that play impor-
tant roles in other branches of mathematics: pseudo-Riemannian metrics,
sub-Riemannian metrics, and Finsler metrics. Each is defined by relaxing
one of the requirements in the definition of Riemannian metric: a pseudo-
Riemannian metric 1s obtained by relaxing the requirement that the metric
be positive; a sub-Riemannian metric by relaxing the requirement that it
be defined on the whole tangent space; and a Finsler metric by relaxing
the requirement that i1t be quadratic on each tangent space.

Pseudo-Riemannian Metrics

A pseudo-Riemannian metric (occasionally also called a semi-Riemann-
ian metric) on a smooth manifold M is a symmetric 2-tensor field g that
1s nondegenerate at each point p € M. This means that the only vector
orthogonal to everything is the zero vector. More formally, g(X,Y) = 0
for all Y € T,M if and only if X = 0. If g = ¢;;¢0"¢’ in terms of a local
coframe, nondegeneracy just means that the matrix g;; 1s invertible. If g 1s
Riemannian, nondegeneracy follows immediately from positive-definiteness,
so every Riemannian metric 1s also a pseudo-Riemannian metric; but in
ogeneral pseudo-Riemannian metrics need not be positive.

Given a pseudo-Riemannian metric ¢ and a point p € M, by a sim-
ple extension of the Gram—Schmidt algorithm one can construct a basis
(E1, ..., E,) for T,,M in which g has the expression

e (@2 (OTTHZ £ (™) (3.4)

for some integer 0 < r < n. This integer r, called the index of ¢, is equal
to the maximum dimension of any subspace of 1,,M on which g is negative
definite. Therefore the index is independent of the choice of basis, a fact
known classically as Sylvester’s law of inertia.

By far the most important pseudo-Riemannian metrics (other than the
Riemannian ones) are the Lorentz metrics, which are pseudo-Riemannian
metrics of index 1. The most important example of a Lorentz metric is the
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Minkowski metric; this is the Lorentz metric m on R™T! that is written in
terms of coordinates (£1,...,&",7) as

m = (d§")" + -+ + (d€")" — (dr)”. (3.5)

In the special case of R*, the Minkowski metric is the fundamental invariant,
of Einstein’s special theory of relativity, which can be expressed succinctly
by saying that in the absence of gravity, the laws of physics have the same
form in any coordinate system in which the Minkowski metric has the
expression (3.5). The differing physical characteristics of “space” (the &
directions) and “time” (the 7 direction) arise from the fact that they are
subspaces on which ¢ is positive definite and negative definite, respectively.
The general theory of relativity includes gravitational eflects by allowing
the Lorentz metric to vary from point to point.

Many aspects of the theory ot Riemannian metrics apply equally well to
pseudo-Riemannian metrics. Although we do not treat pseudo-Riemannian
geometry directly in this book, we will attempt to point out as we go along
which aspects of the theory apply to pseudo-Riemannian metrics. As a
rule of thumb, proofs that depend only on the invertibility of the metric
tensor, such as existence and uniqueness ot the Riemannian connection and
geodesics, work fine in the pseudo-Riemannian setting, while proots that use
positivity 1n an essential way, such as those involving distance-minimizing
properties of geodesics, do not.

For an introduction to the mathematical aspects of pseudo-Riemannian

metrics, see the excellent book |[O’N&83|; a more physical treatment can be
found in [HET73|.

Sub-Riemannian Metrics

A sub-Riemannian metric (also sometimes known as a singular Riemannian
metric or Carnot—Carathéodory metric) on a manifold M is a fiber metric
on a smooth distribution S C T'M (i.e., a k-plane field or sub-bundle of
T'M). Since lengths make sense only for vectors in S, the only curves whose
lengths can be measured are those whose tangent vectors lie everywhere
in S. Theretore one usually imposes some condition on S that guarantees
that any two nearby points can be connected by such a curve. This 1s, in
a sense, the opposite of the Frobenius integrability condition, which would
restrict every such curve to lie in a single leat ot a foliation.
Sub-Riemannian metrics arise naturally in the study of the abstract mod-
els of real submanifolds of complex space C", called CR manifolds. (Here
CR stands for “Cauchy—Riemann.”) CR manifolds are real manifolds en-
dowed with a distribution S C T'M whose fibers carry the structure of com-
plex vector spaces (with an additional integrability condition that need not
concern us here). In the model case of a submanifold M C C", S is the set of
vectors tangent to M that remain tangent after multiplication by i = +/—1
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in the ambient complex coordinates. If S is sufficiently far from being in-
tegrable, choosing a fiber metric on S results in a sub-Riemannian metric
whose geometric properties closely reflect the complex-analytic properties
of M as a subset of C".

Another motivation for studying sub-Riemannian metrics arises from
control theory. In this subject, one is given a manifold with a vector field
depending on parameters called controls, with the goal being to vary the
controls so as to obtain a solution curve with desired properties, often
one that minimizes some function such as arc length. It the vector field is
everywhere tangent to a distribution S on the manifold (for example, in
the case of a robot arm whose motion is restricted by the orientations of
its hinges), then the function can often be modeled as a sub-Riemannian
metric and optimal solutions modeled as sub-Riemannian geodesics.

A useful introduction to the geometry of sub-Riemannian metrics is pro-

vided in the article |[Str86].

Fainsler Metrics

A Finsler metric on a manifold M is a continuous function F': TM — R,
smooth on the complement of the zero section, that defines a norm on
each tangent space 1, M. This means that F'(X) > 0 for X # 0, F(cX) =
c|F'(X) for c € R, and F(X +Y) < F(X) + F(Y). Again, the norm
function associated with any Riemannian metric is a special case.

The inventor of Riemannian geometry himself, GG. F. B. Riemann, clearly
envisaged an important role in n-dimensional geometry for what we now
call Finsler metrics; he restricted his investigations to the “Riemannian”
case purely for simplicity (see [Spi79, volume 2|). However, only very re-
cently have Finsler metrics begun to be studied seriously from a geometric
point of view—see |{Che96| for a survey of recent progress in the differential-
geometric investigation of Finsler metrics.

The recent upsurge of interest in Finsler metrics has been motivated
largely by the fact that two different Finsler metrics appear very naturally
in the theory of several complex variables: at least for bounded strictly
convex domains in C", the Kobayasht metric and the Carathéodory met-
ric are intrinsically defined, biholomorphically invariant Finsler metrics.
Combining differential-geometric and complex-analytic methods has led to
striking new insights into both the function theory and the geometry of
such domains. We do not treat Finsler metrics turther in this book, but
you can consult one of the recent books on the subject (e.g. |[AP94, JP93])
or the references cited in [Che96|.
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The Model Spaces of Riemannian Geometry

Before we delve into the general theory of Riemannian manifolds, let’s
ogive it some substance by introducing three classes of highly symmetric
“model spaces” of Riemannian geometry—Euclidean space, spheres, and
hyperbolic spaces. For much more information on the material covered in

this section, see |Wol84]|.

Euclidean Space

The simplest and most important model Riemannian manifold is of course
R" itself, with the Euclidean metric g given by (3.2). More generally, if V' is
any n-dimensional vector space endowed with an inner product, we can set
g(X,Y)=(X,Y) forany X, Y € T,V = V. Choosing an orthonormal basis
(E1,...,E,) for V defines a map from R" to V by sending (2, ...,2") to
r'E;; this is easily seen to be an isometry of (V, g) with (R", g).

Spheres

Our second model space is the sphere of radius R in R®T!, denoted S,
with the metric ¢ » Induced from the Euclidean metric on R™ ™! which we
call the round metric of radius R. (When R = 1, this is simply called the
round metric, and we’ll use the notations S™ and g.)

One of the first things one notices about the spheres is that they are
highly symmetric. To describe the symmetries of the sphere, we introduce
some standard terminology. Let M be a Riemannian manifold. First, M
1s a homogeneous Riemannian manifold it 1t admits a Lie group acting
smoothly and transitively by isometries. Second, given a point p € M, M
1s 2sotropic at p if there exists a Lie group G acting smoothly on M by
isometries such that the isotropy subgroup G, C G (the subgroup of ele-
ments of G that fix p) acts transitively on the set of unit vectors in T, M
(where g € G, acts on T, M by g.: T,M — T,,M). Clearly a homogeneous
Riemannian manifold that is isotropic at one point is isotropic at every
point; in that case, one says M 1s homogeneous and isotropic. A homoge-
neous Riemannian manifold looks geometrically the same at every point,
while an 1sotropic one looks the same in every direction.

We can immediately write down a large group of isometries of S’ by
observing that the linear action of the orthogonal group O(n+1) on R®**
preserves S7% and the Euclidean metric, so 1ts restriction to S% acts by
isometries of the sphere. (Later we’ll see in fact that this is the full isometry
group, but we don’t need that fact now.)

Proposition 3.3. O(n+1) acts transitively on orthonormal bases on S';.
More precisely, given any two points p,p € S, and orthonormal bases { E; }
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FIGURE 3.2. Transitivity of O(n + 1) on orthonormal bases.

for T,8% and {E;} for T;S%, there exists ¢ € O(n + 1) such that (p) = p
and gty = E;. In particular, S 1s homogeneous and isotropic.

Proof. 1t suffices to show that given any p € S% and any orthonormal
basis {E;} for 1,S';, there is an orthogonal map that takes the “north
pole” N = (0,...,0,R) to p and the standard basis {0;} for TS’ to {E; }.

To do so, think of p as a vector of length R in R"*!, and let p = p/R
denote the corresponding unit vector (Figure 3.2). Since the basis vectors
{E); } are tangent to the sphere, they are orthogonal to p, so (E1,..., E,,D)
is an orthonormal basis for R?T!. Let a be the matrix whose columns
are these basis vectors. Then a € O(n + 1), and by elementary linear
algebra a takes the standard basis vectors (01,...,0,11) to (E1,..., E,, D).
In particular, o(0,...,0, R) = p. Moreover, since « acts linearly on R" ',
1ts push-forward is represented in standard coordinates by the same matrix,
so a0; = E; for1=1,...,n, and « is the desired orthogonal map. ]
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Another important teature ot the sphere—one that is much less evident
than its symmetry—is that it is locally contormally equivalent to Euclidean
space, 1n a sense that we now describe. T'wo metrics g7 and g, on a manitold

M are said to be conformal to each other if there is a positive function
f € C°°(M) such that go = fg;. Two Riemannian manifolds (M, g) and

(M, g) are said to be conformally equivalent if there is a diffeomorphism
@: M — M such that ©*g is conformal to g.

Exercise 3.10. (a) Show that two metrics are conformal if and only if
they define the same angles but not necessarily the same lengths.

(b) Show that a diffeomorphism is a conformal equivalence if and only if
it preserves angles.

A conformal equivalence between R"™ and the sphere S, C R ™! minus
a point is provided by stereographic projection from the north pole. This is
the map o: 8% — {N} — R" that sends a point P € 8% — {N} ¢ R"™!,
written P = (£4,...,&", 7), to u € R", where U = (u',...,u"™ 0) is the
point where the line through N and P intersects the hyperplane {7 = 0} in

R"*! (Figure 3.3). Thus U is characterized by the fact that N U=ANP
for some nonzero scalar \. Writing N = (0, R), U = (u,0),and P = (£, 7) €
R" ! = R"™ x R, this leads to the system of equations

u' = A’

—R = X\1—R). (3.6)

Solving the second equation for A and plugging it into the first equation,
we get the formula for stereographic projection

R¢
R—71

o(E,T) =u = (3.7)
Clearly o is defined and smooth on all of S, — {/N}. The easiest way to
see that it is a diffeomorphism is to compute its inverse. Solving the two
equations of (3.6) for 7 and &' gives

U’ A—1

gZ:T’ T=R T (3.8)

The point P = o~ !(u) is characterized by these equations and the fact that
P is on the sphere. Thus, substituting (3.8) into || + 7% = R? gives

ul® (A =1)
e ot T T

from which we conclude

4 2 R?
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FIGURE 3.3. Stereographic projection.

Inserting this back into (3.8) gives the formula

2R” ° — R°
“_ R ), (3.9)

—1 s -
o = (€7 = (1 R

which by construction maps R" back to S3 — {/N} and shows that o is a
diffeomorphism.

Lemma 3.4. Stereographic projection 1s a conformal equivalence between

S” —{N} and R".

Proof. The inverse map o~ ! is a local parametrization, so we will use it to

compute the pullback metric. Consider an arbitrary point ¢ € R"™ and a
vector V € I, R", and compute

(6™ G,(V,V) = §,(c.'V,0.'V) = g0, 'V, 0, 'V),

where g denotes the Euclidean metric on R®™!. Writing V = V*'0; and
o~ Hu) = (&(u), 7(u)), the usual formula for the push-forward of a vector
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can be written

o¢ 9 .ot 9

—1 L 2
oV =Y awioe T Guior
s, 0
— V& | —.
Ve OEJ VT@T
Now

IR*uI

J —

vesv <|u2 RQ)

C 2RVI 4RI (V,u)
CuP+ R (Jul?+ R

2 p2
V’TV(RU R)

ul? + R?2
2R(V, u) 2R(|u|2 — R2)<V, u)
"~ ul2 + R? (Jul? + R2)?
ARV, u)
~ (]2 + R2)?

where we have used the notation V(|u|*) = 2>, V*u* = 2(V,u). There-
fore,

T

Glo; 'V, 'V) =) (VE)? + (V1)

j=1

4R4|V|2 16R4<V, w)? | 16R4|u|2(V, u)?
(ju2+ R?)?  (Jul?+R?)3  (Ju]?> + R?)*
16 R°(V, u)*

In other words,

(3.10)

where now g represents the Euclidean metric on R", and so ¢ is a contformal
equivalence. ]

It follows immediately from this lemma that the sphere is locally confor-
mally flat; 1.e., each point p € S’ has a neighborhood that is conformally
equivalent to an open set in R™. Stereographic projection gives such an
equivalence for a neighborhood of any point except the north pole; apply-
ing a suitable rotation and then stereographic projection (or stereographic
projection from the south pole), we get such an equivalence for a neighbor-
hood of the north pole as well.
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Hyperbolic Spaces

Our third class of model Riemannian manifolds is the hyperbolic spaces
of dimension n. For each R > 0 we will describe a homogeneous, isotropic
Riemannian manifold HY, called hyperbolic space of radius R, analogous to
the sphere ot radius R. The special case R = 1 is denoted H" and 1is called
simply hyperbolic space. There are three equivalent models of the hyperbolic
spaces, each of which 1s useful in certain contexts. We’'ll introduce all of
them and show that they are isometric.

Proposition 3.5. For any fired R > 0, the following Riemannian mani-
folds are all mutually 1sometric.

(a) (HYPERBOLOID MODEL) H7, is the “upper sheet” {T > 0} of the two-
sheeted hyperboloid in R™ 11 defined in coordinates (£1,...,£", 1) by

the equation 7 — |£]|* = R*, with the metric
hi = 1"m,

where v: HY — R is inclusion, and m is the Minkowski metric

(3.5) on R**1,

(b) (POINCARE BALL MODEL) B is the ball of radius R in R™, with the

metric given in coordinates (u',...,u") by
h2 _ 4R4 (dul)Q o T (dun)Q
(R? —ul?)*

(¢) (POINCARE HALF-SPACE MODEL) U is the upper half-space in R"
defined in coordinates (x',..., " 1, y) by {y > 0}, with the metric

(d.flj‘l)Q S (dxn—1)2 +dy2

3 _ D2
hY = R "

Proof. We begin by giving a geometric construction of a diffeomorphism
m: Hp — Bp

from the hyperboloid to the ball, which we call hyperbolic stereographic
projection, and which turns out to be an 1sometry between the two metrics
given in (a) and (b).

Let S € R""! denote the point S = (0,...,0,—R). For any P =
(& ..., 6" 1) € HE € R set n(P) = u € B%, where U = (u,0) €
R™™! is the point where the line through S and P intersects the hyper-

plane {7 = 0} (Figure 3.4). U is characterized by S U = ASP for some
nonzero scalar A, or

u' = A’

R=\r+R). (3:11)
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The computation proceeds just as before. In this case, the relevant equa-
tions are

2 ] 2 9
Vel — IR2V : AR uJ(V,U,);
R* —|ul*  (R* — |u|?)3
4R3<V, u) |
(R? — |ul?)?’
m(r, ' V,m, V) =) (V) —(Vr)?
j=1
AR*|V|?
(RQ - |u 2)2
— hh(V, V).

VT =

Incidentally, this argument also shows that hi, is positive definite, and
thus is indeed a Riemannian metric, a fact that was not evident from the
defining formula due to the fact that m is not positive definite.

Next we consider the Poincaré half-space model, by constructing an ex-
plicit diffeomorphism

. T T

In this case 1t 1s more convenlent to write the coordinates on the ball as
(u',...,u" 1, v) = (u,v). In the 2-dimensional case, x is easy to write
down in complex notation w = u +1v and z = x + 1y. It is a variant of the

classical Cayley transform:

w + 1R
w— 1R

kK(w) =2=—1iR (3.12)
It 1s shown 1n elementary complex analysis courses that this is a complex-
analytic diffeomorphism taking B% onto U%. Separating z into real and
Imaginary parts, this can also be written in real terms as

2Ry R? — |ul® — v?
kKlu,v) = (x,y) = , R .
@) =) = (G e R = A7)
This same formula makes sense in any dimension, and obviously maps the

ball {|u|* + v* < R*} into the upper half-space. It is straightforward to
check that 1ts 1nverse 1s

K (.:z’:,y) — (u,v) — (IQ (y R)Q’R |3;-|2 (y R)2

so « 18 a diffeomorphism, called the generalized Cayley transform. The
verification that /{*h% = h2R 1s basically a long calculation, and is left to

the reader. ]
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Exercise 3.11. Prove that k*h% = h%. Here are three different ways you
might wish to proceed:

(i) Compute h%(li* V, k.V') directly, as in the proof of Proposition 3.5.

(ii) Show that & is the restriction to the ball of the map ocopoo™ ', where

o: S% — R" is stereographic projection and p: S — S% is the 90°
rotation

p(£17 e 7£n_17£n77-) — (£17 e 7£n_17_7-7 gn)ﬂ

taking the hemisphere {7 < 0} to the hemisphere {£" > 0}. This
shows that x is a conformal map, and theretore it suflices to show that
h%(k«V, k< V) = h%(V, V) for a single strategically chosen vector V at

each point. Do this for V = 0/0w.

(iii) If you know some complex analysis, first do the 2-dimensional case
using the complex form (3.12) of k: Compute the pullback in complex
notation, by noting that

2 dz dz

(Im z)2°

h% = R

and using the fact that a holomorphic diffeomorphism z = F(w) is a
conformal map with F*(dzdz) = |F'(w)|°dw dw. Then show that the
computation of h%(k«V, k+V) in higher dimensions can be reduced to
the 2-dimensional case, by conjugating x with a suitable orthogonal
transformation in n — 1 variables.

We often use the generic notation H?% to refer to any one of the mani-
folds of Proposition 3.5, and hg to refer to the corresponding metric, using
whichever model is most convenient for the application we have in mind. For
example, the form of the metric in either the ball model or the halt-space
model makes it clear that the hyperbolic metric is locally conformally flat;
indeed, in either model, the identity map gives a global conformal equiva-
lence with an open subset of Euclidean space.

The symmetries of H, are most easily seen in the hyperboloid model. Let
O(n,1) denote the group of linear maps from R"! to itself that preserve
the Minkowski metric. (This is called the Lorentz group in the physics
literature.) Note that each element of O(n, 1) preserves the set {7% —|£|* =
R*}, which has two components determined by {7 > 0} and {7 < 0}. We
let O, (n, 1) denote the subgroup of O(n, 1) consisting of maps that take the
component {7 > 0} to itself. Clearly O (n, 1) preserves H%, and because
1t preserves m 1t acts on HY, as 1sometries.

Proposition 3.6. O, (n,1) acts transitively on the set of orthonormal
bases on H, and therefore H'; 1s homogeneous and isotropic.

Proof. The argument is entirely analogous to the proot of Proposition 3.3,
so we give only a sketch. If p € H; and {FE;} is an orthonormal basis for
T,H%,, an easy computation shows that {E1,...,E,, E,11 = p/R} is a
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FIGURE 3.5. O4(n, 1) acts transitively on orthonormal bases on H.

basis for R**! such that m has the following expression in terms of the
dual basis:

m= ()" +- -+ (") = (¢"T)".

It tollows easily that the matrix whose columns are the E;s is an element
of O, (n,1) sending N = (0,...,0,R) to p and 0; to E; (Figure 3.5). [

Exercise 3.12. The spherical and hyperbolic metrics come in families g R
hr, parametrized by a positive real number R. We could have also defined
a family of metrics on R" by

gr — RQ(SZ'ijE‘idZE‘j :

Why did we not bother?
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Problems

3-1.

3-2.

3-9.

Suppose (ﬁ , g) is a Riemannian m-manifold, M C M is an embedded
n-dimensional submanifold, and g is the induced Riemannian metric
on M. For any point p € M, show that there 1s a neighborhood U of p
in M and a smooth orthonormal frame (FE1,..., E,,) on U such that

(E1, ..., Ey,) form an orthonormal basis for T, M at each q & UN M.
Any such frame is called an adapted orthonormal frame. [Hint: Apply
the Gram—Schmidt algorithm to the coordinate frame {0;} in slice
coordinates. |

Suppose ¢ is a pseudo-Riemannian metric on an n-manifold M. For
any p € M, show there is a smooth local frame (E1,..., E,) defined
in a neighborhood of p such that g can be written locally in the form

(3.4). Conclude that the index of g is constant on each component of
M.

Let (M, g) be an oriented Riemannian manifold with volume element
dV'. The divergence operator div: TJ(M) — C°°(M) is defined by

d(ixdV) = (div X)dV,

where 7 x denotes interior multiplication by X: for any k-form w, ¢ xw
is the (kK — 1)-form defined by

in(Vl, . . -,Vk—l) — w(X, V1, . . -,Vk—l)-

(a) Suppose M is a compact, oriented Riemannian manifold with
boundary. Prove the tollowing divergence theorem for X &

T(M):

/ div X dV :/ (X,N)dV,
M oM

where N 1s the outward unit normal to 9M and d17 1s the Rie-
mannian volume element of the induced metric on 9M.

(b) Show that the divergence operator satisfies the following product
rule for a smooth function v € C°°(M):

div(uX) = u div X + (grad u, X ),

and deduce the following “integration by parts” formula:

/ (grad u, X)dV = —/ U dideV—l—/ w(X,N)dV.
M M &M
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3-4. Let (M, g) be a compact, connected, oriented Riemannian manifold
with boundary. For v € C°°(M), the Laplacian of u, denoted Auw, is
defined to be the function Au = div(grad u). A function u € C°°(M)

1s sald to be harmonic it Au = 0.

(a) Prove Green’s identities:

/ UAV dV—I—/ (grad u, grad v) dV :/ uNvdV.
M M M

/ (uAV — vAu) dV = / (u Nv —v Nu)dV .
M oM

(b) If OM +# (), and u, v are harmonic functions on M whose restric-
tions to OM agree, show that u = v.

(¢) If OM = (), show that the only harmonic functions on M are the
constants.

3-5. Let M be a compact oriented Riemannian manifold (without bound-
ary). A real number ) is called an eigenvalue of the Laplacian if
there exists a smooth function v on M, not identically zero, such
that Au = Au. In this case, u is called an eigenfunction correspond-
ing to A.

(a) Prove that 0 is an eigenvalue of A, and that all other eigenvalues
are strictly negative.
(b) If u and v are eigenfunctions corresponding to distinct eigenval-

ues, show that [, uvdV = 0.

3-6. Consider R" as a Riemannian manifold with the Euclidean metric.

(a) Let E(n) be the set of (n+1) X (n+ 1) real matrices of the form

A b
0 1)/’
where A € O(n) and b € R" (considered as a column vector).

Show that F/(n) is a closed Lie subgroup of GL(n+1,R), called
the Fuclidean group or the group of rigid motions.

(b) Define a map E(n) x R” — R" by identifying R™ with the
subset

S={(z,1) e R""™ : 2 € R"}

of R"*! and restricting the linear action of E(n) on R"*! to S.
Show that this is a smooth action of E(n) on R™ by isometries
of the Euclidean metric.
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(c) Show that E(n) acts transitively on R™, and takes any ortho-
normal basis to any other one, so Fuclidean space 1s homoge-
neous and 1sotropic.

3-7. Let U? denote the hyperbolic plane, i.e., the upper half-plane in R?
with the metric h = (dz* + dy?) /y*. Let SL(2,R) denote the group
of 2 X 2 real matrices of determinant 1.

(a) Considering U* as a subset of the complex plane with coordinate
2 =x + 1y, let
az + b

T td (

a b
c d

) c SL(2,R).

Show that this defines a smooth action of SL(2,R) on U? by
iIsometries of the hyperbolic metric.

(b) We have seen that O, (2,1) also acts on U? by isometries. Show
that SL(Q, R)/{::I} — SO_|_(2, ]_), where SO_|_(2, ]_) — O_|_(2, 1)ﬂ
SL(3,R).

3-8. Suppose M and M are smooth manifolds, and p: M —s M is a sur-
jective submersion. For any y € M, the fiber over y, denoted M,, 1s

the inverse image p~1(y) C M; it is a closed, embedded submanifold

by the implicit function theorem. If M has a Riemannian metric g,
at each point £ € M the tangent space 1,M decomposes into an
orthogonal direct sum

where V, := Kerp, =1 xﬂp(w) 1s the vertical space and H, := VmL 1S
the horizontal space. It g is a Riemannian metric on M, p is said to
be a Riemannian submersion if g(X,Y) = g(p. X, p.Y ) whenever X
and Y are horizontal.

(a) Show that any vector field W on M can be written uniquely as
W =WH" 4+ WYV, where W is horizontal, WV is vertical, and
both W* and WV are smooth.

(b) If X is a vector field on M, show there is a unique smooth

horizontal vector field X on M , called the horizontal lift of X,
that is p-related to X. (This means p,X,; = X, for each g &

M)

(c) Let GG be a Lie group acting smoothly on M by isometries of g,
and suppose that pop = p for all ¢ € & and that G acts transi-
tively on each fiber M,,. Show that there 1s a unique Riemannian
metric g on M such that p is a Riemannian submersion. [Hint:
First show that .V, = V() for any ¢ € G|
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3-9. The complex projective space of dimension n, denoted CP", is defined

as the set of 1-dimensional complex subspaces of C" 1. Let 7: C**1—
{0} — CP"™ denote the quotient map.

(a) Show that CP™ can be uniquely given the structure of a smooth,
compact, real 2n-dimensional manifold on which the Lie group
U(n + 1) acts smoothly and transitively:.

(b) Show that the restriction of m to S*"*t1 c C"*! is a surjective
submersion.

(¢) Using Problem 3-8, show that the round metric on S***1 de-

scends to a homogeneous and isotropic Riemannian metric on
CP", called the Fubini—Study metric.

3-10. Let G be a Lie group with Lie algebra g. A Riemannian metric g on G
1s sald to be left-invariant if it is invariant under all left translations:
L7g = g tor all p € G. Similarly, g is right-invariant if it is invariant
under all right translations, and bi-invariant it it is both left- and
right-invariant.

(a) Show that a metric g is left-invariant if and only if the coefficients
gi; = g(X;, X;) of g with respect to any left-invariant frame
{ X;} are constants.

(b) Show that the restriction map g — g| ~ gives a bijection be-
tween left-invariant metrics on G and inner products on g.

3-11. Suppose G is a compact, connected Lie group with a left-invariant
metric g, and let dV denote the Riemannian volume element of g.
Show that dV is bi-invariant. [Hint: Show that R7dV is left-invariant
and positively oriented, and is therefore equal to ¢(p)dV for some
positive number ¢(p). Show that ¢: G — R™ is a Lie group homo-
morphism, so its image is a compact subgroup of R™.]

3-12. If & 1s a Lie group and p € (, conjugation by p gives a Lie
group automorphism C): G — G, called an inner automorphism,
by C,(q) = pgp~—*. Let Ad, := (C},)«: g — g be the induced Lie al-
gebra automorphism. It is easy to check that C,, o C,, = C),,,, SO
Ad: G x g — g is a representation of (&, called the adjoint represen-
tation.

(a) Show that an inner product on g induces a bi-invariant metric
on (G as in Problem 3-10 if and only if it is invariant under the
adjoint representation.

(b) Show that every compact, connected Lie group admits a bi-
invariant Riemannian metric. [Hint: Start with an arbitrary in-

ner product (-,-) on g and integrate the function f defined by
f(p) :=(Ad, X, Ad, Y) over the group. You will need to use the

result of Problem 3-11.
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Connections

Before we can define curvature on Riemannian manifolds, we need to study
ogeodesics, the Riemannian generalizations of straight lines. It is tempting
to define geodesics as curves that minimize length, at least between nearby
points. However, this property turns out to be technically difficult to work
with as a definition, so instead we’ll choose a different property of straight
lines and generalize that.

A curve in Euclidean space is a straight line if and only if its acceleration
1s identically zero. This is the property that we choose to take as a defining
property of geodesics on a Riemannian manifold. To make sense of this
idea, we're going to have to introduce a new object on manifolds, called a
connection—essentially a coordinate-invariant set of rules for taking direc-
tional derivatives of vector fields.

We begin this chapter by examining more closely the problem of finding
an invariant interpretation for the acceleration of a curve, as a way to
motivate the definitions that follow. We then give a rather general definition
of a connection, in terms of directional derivatives of sections of vector
bundles. The special case in which the vector bundle 1s the tangent bundle
1s called a “linear connection,” and it is on this case that we focus most
of our attention. After deriving some basic properties of connections, we
show how to use one to differentiate vector fields along curves, to define
ogeodesics, and to “parallel translate” vector fields along curves.
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FIGURE 4.1. Euclidean coordinates. FIGURE 4.2. Polar coordinates.

T'he Problem ot Ditlerentiating Vector Fields

To see why we need a new kind of differentiation operator, consider a
submanifold M C R"™ with the induced Riemannian metric, and a smooth
curve v lying entirely in M. We want to think of a geodesic as a curve in M
that is “as straight as possible.” An intuitively plausible way to measure
straightness is to compute the Euclidean acceleration 4(¢) as usual, and
orthogonally project (¢) onto the tangent space 1. M. This yields a

vector ¥(t)' tangent to M, the tangential acceleration of v. We could then
define a geodesic as a curve in M whose tangential acceleration is zero.
This definition is easily seen to be invariant under rigid motions of R",
although at this point there 1s little reason to believe that it 1s an intrinsic
invariant of M (one that depends only on the Riemannian geometry of M
with its induced metric).

On an abstract Riemannian manifold, for which there is no “ambient
Fuclidean space” in which to differentiate, this technique is not available.
Thus we have to find some way to make sense of the acceleration of a curve
in an abstract manifold. Let v: (a,b) — M be such a curve. As you know
from your study of smooth manifold theory, the velocity vector +(t) has
a coordinate-independent meaning for each t € M, and its expression in
any coordinate system matches the usual notion of velocity of a curve in
R"™: A(t) = (A'(t),...,4™(t)). However, unlike the velocity, the acceleration
vector has no such coordinate-invariant interpretation. For example, con-
sider the parametrized circle in the plane given in Fuclidean coordinates by
(x(t),y(t)) = (cost,sint) (Figure 4.1). Its acceleration at time ¢ is the unit
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FIGURE 4.3. 4(t0) and (%) lie in different vector spaces.

vector (x(t),y(t)) = (—cost,—sint). But in polar coordinates, the same
curve is described by (r(¢),0(t)) = (1,¢) (Figure 4.2). In these coordinates,
the acceleration vector is (7(¢),6(t)) = (0,0)!

The problem is this: If we wanted to make sense of ¥(tg) by differenti-
ating (t) with respect to ¢, we would have to write a difference quotient
involving the vectors () and *(¢g); but these live in different vector spaces

(T M and T, M respectively), so it doesn’t make sense to subtract

them (Figure 4.3).

The velocity vector (%) is an example of a “vector field along a curve,” a
concept for which we will give a rigorous definition presently. To interpret
the acceleration of a curve in a manitold, what we need 1s some coordinate-
invariant way to differentiate vector fields along curves. To do so, we need a
way to compare values of the vector field at different points, or, intuitively,
to “connect” nearby tangent spaces. This 1s where a connection comes in:
it will be an additional piece of data on a manifold, a rule for computing
directional derivatives of vector fields.

Connections

It turns out to be easiest to define a connection first as a way of differen-
tiating sections of vector bundles. Later we will adapt the definition to the

case of vector fields along curves.
Let m: . — M be a vector bundle over a manifold M, and let E(M)
denote the space of smooth sections of /. A connection in E is a map

V:JT(M)x E(M) — E(M),
written (X,Y) — VY, satistfying the following properties:
(a) VxY is linear over C°°(M) in X:
Vixi+gx,Y = fVx, Y +9Vx,Y  for f,g € C™(M);
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(b) VxY is linear over R in Y;
VX(aYl -+ bYQ) — CLVXY1 + bVXYQ for a, b - R;

(¢c) V satisfies the following product rule:
Vx(fY)=fVxY +(Xf)Y for f € C°(M).

The symbol V is read “del,” and V x Y is called the covariant derivative of
Y wn the direction of X.

Although a connection is defined by its action on global sections, it fol-
lows from the definitions that it is actually a local operator, as the next
lemma shows.

Lemma 4.1. If V is a connection in a bundle E, X € T(M), Y € E(M),
and p € M, then VxY|, depends only on the values of X and Y in an

arbitrarily small neighborhood of p. More precisely, if X = X and Y =Y
on a neighborhood of p, then VxY |, = VY|,.

e W

Proof. First consider Y. Replacing ¥ by Y — Y, it clearly suffices to show
that VxY|, =0 if Y vanishes on a neighborhood U of p.

Choose a bump function ¢ € C°° (M) with support in U such that ¢(p) =
1. The hypothesis that Y vanishes on U implies that Y = 0 on all of M,
so Vx(¢Y)=Vx(0-¢0Y)=0Vx(¢Y)=0. Thus for any X € T(M), the
product rule gives

0=Vx(¢Y) = (Xp)Y +¢(VxY). (4.1)

Now Y = 0 on the support of ¢, so the first term on the right is identically
zero. Evaluating (4.1) at p shows that VxY|, = 0. The argument for X is
similar but easier. |

Exercise 4.1. Complete the proof of Lemma 4.1 by showing that VxY
and V Y agree at p it X = X on a neighborhood of p.

T'he preceding lemma tells us that we can compute V xY at p knowing
only the values of X and Y near p. In fact, as the next lemma shows, we
need only know the value of X at p itself.

Lemma 4.2. With notation as in Lemma 4.1, VxY|, depends only on the
values of 'Y in a neighborhood of p and the value of X at p.

Proof. By linearity, it suffices to show that VxY|, = 0 whenever X, =

0. Choose a coordinate neighborhood U of p, and write X = X'0; in
coordinates on U, with X*(p) = 0. Then, for any Y € &(M),

VxYl, = Vxig, Y], = X'(p)Ve, Y|, = 0.

In the first equality, we used Lemma 4.1, which allows us to evaluate Vx Y|,
by computing locally in U; in the second, we used linearity of V xY over

C>*°(M) in X. ]
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Because of Lemma 4.2, we can write Vx Y in place of VxY|,. This can
be thought ot as a directional derivative of Y at p in the direction of the
vector X,.

Linear Connections

Now we specialize to connections in the tangent bundle of a manifold. A
linear connection on M 1s a connection 1n 1'M, 1.e., a map

V:T(M) xT(M) — T(M)

satisfying properties (a)—(c) in the definition of a connection above.

A linear connection on M is often simply called a connection on M. (The
term affine connection is also frequently used synonymously with linear
connection, although some authors make a subtle distinction between the
two terms; cf., for example, |[KN63, volume 1].)

Although the definition of a linear connection resembles the characteriza-
tion of @) -tensor fields given by the tensor characterization lemma (Lemma
2.4), a linear connection is not a tensor field because it is not linear over
C°°(M) in Y, but instead satisfies the product rule.

Next we examine how a linear connection appears in components. Let
{E;} be a local frame for T'M on an open subset U C M. We will usually
work with a coordinate frame E; = 0;, but it is useful to start by doing the
computations for more general frames. For any choices of the indices ¢ and
7, we can expand Vg, B, In terms of this same frame:

Vi, Lj = Ff]ngk (4.2)

This defines n° functions I’,]fj on U, called the Christoffel symbols ot V with
respect to this frame. The tollowing lemma shows that the action of the
connection V on U is completely determined by its Christoffel symbols.

Lemma 4.3. Let V be a linear connection, and let X,Y € T(U) be ex-
pressed in terms of a local frame by X = X'E;, Y =YJE;. Then

VxY = (XY" 4+ X'Y'T};) E}. (4.3)
Proof. Just use the defining rules for a connection and compute:

VxY =Vx(YE;)
= (XY)E; +Y'Vxig, E;
— (XY)E; + X"YIVy, E,
= XYE; + X'Y'I'}, E}.

Renaming the dummy index in the first term yields (4.3). |
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Existence of Connections

So far, we have studied properties of connections, but have not produced
any, so vou might be wondering if they are plentiful or rare. In fact, they are
quite plentitul, as we will show shortly. Let’s begin with a trivial example:
on R", define the Fuclidean connection by

Vx (Y79;) = (XY7)0;. (4.4)

In other words, VY is just the vector field whose components are the
ordinary directional derivatives of the components of Y in the direction X.
It is easy to check that this satisfies the required properties for a connection,
and that its Christoftel symbols in standard coordinates are all zero. In fact,
there are many more connections on R", or indeed on any manifold covered
by a single coordinate chart; the following lemma shows how to construct
all of them explicitly.

Lemma 4.4. Suppose M 1s a manifold covered by a single coordinate

chart. There 1s a one-to-one correspondence between linear connections on
M and choices of n°> smooth functions {I’,’fj} on M, by the rule

VxY = (X'0,Y" + X'Y'T},) O (4.5)

Proof. Observe that (4.5) is equivalent to (4.3) when E; = 0; is a coordinate
frame, so for every connection the functions {Ffj} defined by (4.2) satisty

(4.5). On the other hand, given {I’fj}, it is easy to see by inspection that
(4.5) is smooth if X and Y are, linear over R in Y, and linear over C°*°(M)
in X, so only the product rule requires checking; this is a straighttorward
computation left to the reader. ]

Exercise 4.2. Complete the proof of Lemma 4.4.

Proposition 4.5. Every manifold admits a linear connection.

Proof. Cover M with coordinate charts {U, }; the preceding lemma guar-

antees the existence of a connection V¢ on each U,. Choosing a partition
of unity {y, } subordinate to {U,}, we’d like to patch the Vs together by
the formula

VxY =) ¢, V&Y. (4.6)

Again, it is obvious by inspection that this expression is smooth, linear over
R in Y, and linear over C"°°(M) in X. We have to be a bit careful with
the product rule, though, since a linear combination of connections is not
necessarily a connection. (You can check, for example, that if V! and V?
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are connections, neither %Vl nor V! + V*# satisfies the product rule.) By
direct computation,

Vx(/Y) = Z@av%(fy)
=) 0o ((XF)Y + fVLY)

= (XP)Y + £ 3 6aVRY

= (X/)Y + fVxY.

Covariant Deriwvatives of Tensor Fields

By definition, a linear connection on M 1is a way to compute covariant
derivatives of vector fields. In fact, any linear connection automatically
induces connections on all tensor bundles over M, and thus gives us a way
to compute covariant derivatives of any tensor field.

Lemma 4.6. Let V be a linear connection on M. There is a unique con-
nection in each tensor bundle leM, also denoted V, such that the following
conditions are satisfied.

(a) OnT'M, V agrees with the given connection.

(b) On T°M, V is given by ordinary differentiation of functions:
Vxf=XT.

(c) V obeys the following product rule with respect to tensor products:

Vx(FRG)=(VxF)RG+ F® (VxG).

(d) V commutes with all contractions: if “tr” denotes the trace on any
pair of indices,

Vx(trY)=tr(VxY).

This connection satisfies the following additional properties:

(2) V obeys the following product rule with respect to the natural pairing
between a covector field w and a vector field Y :

V x (w,Y) — <VXW,Y> -+ (w,VXY) .
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(22) For any F & Tf(M), vector fields Y;, and 1-forms w7,

(VxF)(w', ...,o"\Y7,....Y3) = X(F(w',...,0" Y1,.... )
l
—ZF(wl,...,Vij,...,wl,Yl,...,Yk)
i (4.7)
k
—ZF(wl,...,wl,Yl,...,VXE,...,Yk).
i=1

Exercise 4.3. Prove Lemma 4.6. [Hint: Show that the defining properties
imply (i) and (ii); then use these to prove existence.|

Exercise 4.4. Let V be a linear connection. If w is a 1-form and X a
vector field, show that the coordinate expression for V xw is

Vxw = (Xi&,wk — Xiwjfgk) dz”,

where {Ffj} are the Christoflel symbols of the given connection V on T'M.
Find a coordinate formula for Vx F, where F' € T7(M) is a tensor field of
any rank.

Because the covariant derivative VxY of a vector field (or tensor field)
Y is linear over C°°(M) in X, it can be used to construct another tensor
field called the total covariant derivative, as follows.

Lemma 4.7. If V is a linear connection on M, and F € TF(M), the map
VE: TY M) x - - x THM) x T(M) x -+ x T(M) — C®°(M), given by

VF((.Ul,...,wl,Yl,...,Yk,X) — VXF(wlg---7wl7Y17"'7Yl€)?
defines a (kJ{l) -tensor field.

Proof. This tollows immediately from the tensor characterization lemma:
V x F'is a tensor field, so it is multilinear over C'°°( M) in its k4 arguments;
and it is linear over C'°°(M ) in X by definition of a connection. ]

The tensor field VF' 1s called the total covariant derivative ot F'. For
example, let u be a smooth function on M. Then Vu € T'(M) is just the

1-form du, because both tensors have the same action on vectors: (Vu, X) =
Vxu = Xu= (du,X). The 2-tensor V*u = V(Vu) is called the covariant
Hessian of u.

Exercise 4.5. Show that for any u € C°°(M) and X,Y € T(M),

Vu(X,Y) =Y (Xu) — (VyX)u. (4.8)
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When we write the components of a total covariant derivative in terms
of coordinates, we use a semicolon to separate indices resulting from dif-
ferentiation from the preceding indices. Thus, for example, if Y is a vector
field written in components as Y = Y*0,, the components of the (1)—tensor

_ 1
field VY are written Y".;, so that
VY =Y"..0; ® da?,

with

More generally, the next lemma gives a formula for the components of
covariant derivatives of arbitrary tensor fields.

Lemma 4.8. Let V be a linear connection. The components of the total

covariant derivative of a (lf) -tensor field F' with respect to a coordinate

system are given by

[ k
71 .-.71 - 71 .-.71 71...P... 71 7s - 71 .-.71 D
L = Om F3 75+ E ,lezk | R E :Fil...p...ikrmis'
s=1

s=1

Exercise 4.6. Prove Lemma 4.8.

Vector Fields Along Curves

Without further qualification, a curve in a manifold M always means for
us a smooth, parametrized curve; that 1s, a smooth map v: [ — M, where
I C R is some interval. Unless otherwise specified, we won’t worry about
whether the interval i1s open or closed, bounded or unbounded. A curve
segment is a curve whose domain is a closed, bounded interval |a,b| C R.
It v: I — M is a curve and the interval I has an endpoint, smoothness
of v means by definition that v extends to a smooth curve defined on some
open interval containing /. It can be shown (though we will not do so)
that this notion of smoothness is equivalent to the component functions ~*
in any local coordinates having one-sided derivatives of all orders at the
endpoint, or having derivatives of all orders that extend continuously to
the endpoint. When working with a smooth curve v defined on an interval
that has one or two endpoints, we can always extend v to a smooth curve
on a slightly larger open interval, work with that curve, and restrict back
to the original interval; the values on I of any continuous function of the
derivatives of v are independent of the extension. Thus in prootfs we can
assume whenever convenient that v is defined on an open interval.
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FIGURE 4.4. Extendible vector FIGURE 4.5. Nonextendible vector
field. field.

Let v: I — M be a curve. At any time t € I, the velocity y(t) of v is
invariantly defined as the push-forward ~.(d/dt). It acts on functions by

d

= E(f o) (%)

y(t)f

As mentioned above, this corresponds to the usual notion of velocity in
coordinates. If we write the coordinate representation of v as y(f) =

(v1(2),...,~"(¢)), then
Y(t) =4 (t)0;. (4.9)

(A dot always denotes the ordinary derivative with respect to ¢.)

A wvector field along a curve v: I — M 1s a smooth map V: I — TM
such that V' (¢) € 1T, M for every t € I. We let T(y) denote the space of
vector fields along ~. The most obvious example of a vector field along a
curve 7 is its velocity vector: y(¢) € T’ ;)M for each ¢, and the coordinate
expression (4.9) shows that it is smooth. Here is another example: If ~ is
a curve in R?, let N(t) = JA(t), where J is counterclockwise rotation by
7 /2, so N(t) is normal to ¥(¢). In components, N(t) = (—34(¢), ¥ (¢t)), so
N 1s a smooth vector field along ~.

A large class of examples is provided by the following construction: Sup-
pose v: I — M is a curve, and V € T(M) is a vector field on M. For each

tcl,let V(t) =V, It is easy to check in coordinates that V' is smooth.
A vector field V' along 7 is sald to be extendible if there exists a vector
field V on a neighborhood of the image of v that is related to V' in this
way (Figure 4.4). Not every vector field along a curve need be extendible;
for example, if v(t1) = v(t2) but ¥(t1) # Y(t2) (Figure 4.5), then ¥ is not
extendible.
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Covariant Deriwatives Along Curves

Now we can address the question that originally motivated the definition
of connections: How can we make sense of the directional derivative of a
vector field along a curve?

Lemma 4.9. Let V be a linear connection on M. For each curve v: I —
M, V determines a unique operator

Dy:T(y) — T()

satisfying the following properties:

(a) Linearity over R.:

Di(aV +bW) =aD;V +bD W for a,b € R.

(b) Product rule:

D.(fV) = fV + fD,V for f € C°(1).

(c¢) If V 1is extendible, then for any extension V of V.,

For any V' € J(v), DV is called the covariant derivative of V' along 7.

Proof. First we show uniqueness. Suppose D; is such an operator, and let

to € I be arbitrary. An argument similar to that of Lemma 4.1 shows that

the value of D;V at ty depends only on the values of V in any interval

(to — €,tg + €) containing ty. (If 7 has an endpoint, extend ~ to a slightly

bigger open interval, prove the lemma there, and then restrict back to I.)
Choose coordinates near ~(tp), and write

V(t) = V()0
near tg. Then by the properties of Dy, since 0; is extendible,
DV (to) = V7 (t0)d; + V7 (t0) Vi (1) 9;

- . g g (4.10)
= (V(to) + V7 (o) (t0) TS (v(20)) ) -
This shows that such an operator is unique if it exists.

For existence, if v(I) is contained in a single chart, we can define D,V by
(4.10); the easy verification that it satisfies the requisite properties is left
to the reader. In the general case, we can cover () with coordinate charts
and define D;V by this formula in each chart, and uniqueness implies the
various definitions agree whenever two or more charts overlap. ]
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Exercise 4.7. lImprove Lemma 4.1 by showing that Vx Y actually de-
pends only on the values of Y along any curve tangent to X,. More pre-
cisely, suppose that v: (—¢,e) — M is a curve with v(0) = p and ¥(0) = X,
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